| Home > Publications database > Phase-Selective Epitaxy of Trigonal and Orthorhombic Bismuth Thin Films on Si (111) > print |
| 001 | 1014683 | ||
| 005 | 20240705080647.0 | ||
| 024 | 7 | _ | |a 10.3390/nano13142143 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-03388 |2 datacite_doi |
| 024 | 7 | _ | |a 37513154 |2 pmid |
| 024 | 7 | _ | |a WOS:001039888200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-03388 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Jalil, Abdur Rehman |0 P:(DE-Juel1)171826 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Phase-Selective Epitaxy of Trigonal and Orthorhombic Bismuth Thin Films on Si (111) |
| 260 | _ | _ | |a Basel |c 2023 |b MDPI |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1719990975_18876 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Over the past three decades, the growth of Bi thin films has been extensively explored due to their potential applications in various fields such as thermoelectrics, ferroelectrics, and recently for topological and neuromorphic applications, too. Despite significant research efforts in these areas, achieving reliable and controllable growth of high-quality Bi thin-film allotropes has remained a challenge. Previous studies have reported the growth of trigonal and orthorhombic phases on various substrates yielding low-quality epilayers characterized by surface morphology. In this study, we present a systematic growth investigation, enabling the high-quality growth of Bi epilayers on Bi-terminated Si (111) 1 × 1 surfaces using molecular beam epitaxy. Our work yields a phase map that demonstrates the realization of trigonal, orthorhombic, and pseudocubic thin-film allotropes of Bi. In-depth characterization through X-ray diffraction (XRD) techniques and scanning transmission electron microscopy (STEM) analysis provides a comprehensive understanding of phase segregation, phase stability, phase transformation, and phase-dependent thickness limitations in various Bi thin-film allotropes. Our study provides recipes for the realization of high-quality Bi thin films with desired phases, offering opportunities for the scalable refinement of Bi into quantum and neuromorphic devices and for revisiting technological proposals for this versatile material platform from the past 30 years. |
| 536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
| 536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Hou, Xiao |0 P:(DE-Juel1)165589 |b 1 |u fzj |
| 700 | 1 | _ | |a Schüffelgen, Peter |0 P:(DE-Juel1)165984 |b 2 |u fzj |
| 700 | 1 | _ | |a Bae, Jin Hee |0 P:(DE-Juel1)177006 |b 3 |
| 700 | 1 | _ | |a Neumann, Elmar |0 P:(DE-Juel1)156529 |b 4 |u fzj |
| 700 | 1 | _ | |a Mussler, Gregor |0 P:(DE-Juel1)128617 |b 5 |u fzj |
| 700 | 1 | _ | |a Plucinski, Lukasz |0 P:(DE-Juel1)130895 |b 6 |u fzj |
| 700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 7 |u fzj |
| 773 | _ | _ | |a 10.3390/nano13142143 |g Vol. 13, no. 14, p. 2143 - |0 PERI:(DE-600)2662255-5 |n 14 |p 2143 - |t Nanomaterials |v 13 |y 2023 |x 2079-4991 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1014683/files/nanomaterials-13-02143-v2.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1014683 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171826 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165589 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)165984 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)177006 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)156529 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128617 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130895 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)125588 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 1 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-12 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-12 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-12 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-12 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOMATERIALS-BASEL : 2022 |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:01:18Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:01:18Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:01:18Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-26 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NANOMATERIALS-BASEL : 2022 |d 2023-10-26 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 2 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 3 |
| 920 | 1 | _ | |0 I:(DE-Juel1)HNF-20170116 |k HNF |l Helmholtz - Nanofacility |x 4 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a I:(DE-Juel1)HNF-20170116 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|