Hauptseite > Publikationsdatenbank > Graph Machine Learning for Improved Imputation of Missing Tropospheric Ozone Data > print |
001 | 1014687 | ||
005 | 20240116084318.0 | ||
024 | 7 | _ | |a 10.1021/acs.est.3c05104 |2 doi |
024 | 7 | _ | |a 0013-936X |2 ISSN |
024 | 7 | _ | |a 1520-5851 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-03392 |2 datacite_doi |
024 | 7 | _ | |a 37661931 |2 pmid |
024 | 7 | _ | |a WOS:001061743500001 |2 WOS |
037 | _ | _ | |a FZJ-2023-03392 |
041 | _ | _ | |a English |
082 | _ | _ | |a 333.7 |
100 | 1 | _ | |a Betancourt, Clara |0 P:(DE-Juel1)171435 |b 0 |
245 | _ | _ | |a Graph Machine Learning for Improved Imputation of Missing Tropospheric Ozone Data |
260 | _ | _ | |a Columbus, Ohio |c 2023 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1702460602_490 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Gaps in the measurement series of atmospheric pollutants can impede the reliable assessment of their impacts and trends. We propose a new method for missing data imputation of the air pollutant tropospheric ozone by using the graph machine learning algorithm “correct and smooth”. This algorithm uses auxiliary data that characterize the measurement location and, in addition, ozone observations at neighboring sites to improve the imputations of simple statistical and machine learning models. We apply our method to data from 278 stations of the year 2011 of the German Environment Agency (Umweltbundesamt – UBA) monitoring network. The preliminary version of these data exhibits three gap patterns: shorter gaps in the range of hours, longer gaps of up to several months in length, and gaps occurring at multiple stations at once. For short gaps of up to 5 h, linear interpolation is most accurate. Longer gaps at single stations are most effectively imputed by a random forest in connection with the correct and smooth. For longer gaps at multiple stations, the correct and smooth algorithm improved the random forest despite a lack of data in the neighborhood of the missing values. We therefore suggest a hybrid of linear interpolation and graph machine learning for the imputation of tropospheric ozone time series. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a IntelliAQ - Artificial Intelligence for Air Quality (787576) |0 G:(EU-Grant)787576 |c 787576 |f ERC-2017-ADG |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Li, Cathy W. Y. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Kleinert, Felix |0 P:(DE-Juel1)176602 |b 2 |
700 | 1 | _ | |a Schultz, Martin G. |0 P:(DE-Juel1)6952 |b 3 |e Corresponding author |
770 | _ | _ | |a Data Science for Advancing Environmental Science, Engineering and Technology |
773 | _ | _ | |a 10.1021/acs.est.3c05104 |g p. acs.est.3c05104 |0 PERI:(DE-600)1465132-4 |p 18246-18258 |t Environmental science & technology |v 57 |y 2023 |x 0013-936X |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1014687/files/betancourt_graphml_2023.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1014687/files/betancourt_graphml_2023.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1014687/files/betancourt_graphml_2023.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1014687/files/betancourt_graphml_2023.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1014687/files/betancourt_graphml_2023.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1014687 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171435 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)6952 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |0 PC:(DE-HGF)0122 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-22 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENVIRON SCI TECHNOL : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-29 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ENVIRON SCI TECHNOL : 2022 |d 2023-08-29 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|