001     1014690
005     20231027114414.0
024 7 _ |a 10.1021/acs.nanolett.3c00905
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03395
|2 datacite_doi
024 7 _ |a 37399545
|2 pmid
024 7 _ |a WOS:001021466800001
|2 WOS
037 _ _ |a FZJ-2023-03395
082 _ _ |a 660
100 1 _ |a Behner, Gerrit
|0 P:(DE-Juel1)180161
|b 0
|e Corresponding author
245 _ _ |a Aharonov-Bohm Interference and Phase-Coherent Surface-State Transport in Topological Insulator Rings
260 _ _ |a Washington, DC
|c 2023
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1696941809_316
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present low-temperature magnetotransport measurements on selectively grown Sb2Te3-based topological insulator ring structures. These devices display clear Aharonov-Bohm oscillations in the conductance originating from phase-coherent transport around the ring. The temperature dependence of the oscillation amplitude indicates that the Aharonov-Bohm oscillations originate from ballistic transport along the ring arms. We attribute these oscillations to the topological surface states. Further insight into the phase coherence is gained by comparing with similar Aharonov-Bohm-type oscillations in topological insulator nanoribbons exposed to an axial magnetic field. Here, quasi-ballistic phase-coherent transport is confirmed for closed-loop topological surface states in the transverse direction enclosing the nanoribbon. In contrast, the appearance of universal conductance fluctuations indicates phase-coherent transport in the diffusive regime, which is attributed to bulk carrier transport. Thus, it appears that even in the presence of diffusive p-type charge carriers in Aharonov-Bohm ring structures, phase-coherent quasi-ballistic transport of topological surface states is maintained over long distances.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jalil, Abdur Rehman
|0 P:(DE-Juel1)171826
|b 1
700 1 _ |a Heffels, Dennis
|0 P:(DE-Juel1)178707
|b 2
|u fzj
700 1 _ |a Kölzer, Jonas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Moors, Kristof
|0 P:(DE-Juel1)180184
|b 4
700 1 _ |a Mertens, Jonas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zimmermann, Erik
|0 P:(DE-Juel1)176848
|b 6
700 1 _ |a Mussler, Gregor
|b 7
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 8
700 1 _ |a Lüth, Hans
|0 P:(DE-Juel1)128608
|b 9
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 10
|u fzj
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 11
773 _ _ |a 10.1021/acs.nanolett.3c00905
|g Vol. 23, no. 14, p. 6347 - 6353
|0 PERI:(DE-600)2048866-X
|n 14
|p 6347 - 6353
|t Nano letters
|v 23
|y 2023
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/1014690/files/acs.nanolett.3c00905.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014690
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171826
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180184
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176848
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21