Hauptseite > Publikationsdatenbank > Aharonov-Bohm Interference and Phase-Coherent Surface-State Transport in Topological Insulator Rings > print |
001 | 1014690 | ||
005 | 20231027114414.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.3c00905 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-03395 |2 datacite_doi |
024 | 7 | _ | |a 37399545 |2 pmid |
024 | 7 | _ | |a WOS:001021466800001 |2 WOS |
037 | _ | _ | |a FZJ-2023-03395 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Behner, Gerrit |0 P:(DE-Juel1)180161 |b 0 |e Corresponding author |
245 | _ | _ | |a Aharonov-Bohm Interference and Phase-Coherent Surface-State Transport in Topological Insulator Rings |
260 | _ | _ | |a Washington, DC |c 2023 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1696941809_316 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present low-temperature magnetotransport measurements on selectively grown Sb2Te3-based topological insulator ring structures. These devices display clear Aharonov-Bohm oscillations in the conductance originating from phase-coherent transport around the ring. The temperature dependence of the oscillation amplitude indicates that the Aharonov-Bohm oscillations originate from ballistic transport along the ring arms. We attribute these oscillations to the topological surface states. Further insight into the phase coherence is gained by comparing with similar Aharonov-Bohm-type oscillations in topological insulator nanoribbons exposed to an axial magnetic field. Here, quasi-ballistic phase-coherent transport is confirmed for closed-loop topological surface states in the transverse direction enclosing the nanoribbon. In contrast, the appearance of universal conductance fluctuations indicates phase-coherent transport in the diffusive regime, which is attributed to bulk carrier transport. Thus, it appears that even in the presence of diffusive p-type charge carriers in Aharonov-Bohm ring structures, phase-coherent quasi-ballistic transport of topological surface states is maintained over long distances. |
536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Jalil, Abdur Rehman |0 P:(DE-Juel1)171826 |b 1 |
700 | 1 | _ | |a Heffels, Dennis |0 P:(DE-Juel1)178707 |b 2 |u fzj |
700 | 1 | _ | |a Kölzer, Jonas |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Moors, Kristof |0 P:(DE-Juel1)180184 |b 4 |
700 | 1 | _ | |a Mertens, Jonas |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Zimmermann, Erik |0 P:(DE-Juel1)176848 |b 6 |
700 | 1 | _ | |a Mussler, Gregor |b 7 |
700 | 1 | _ | |a Schüffelgen, Peter |0 P:(DE-Juel1)165984 |b 8 |
700 | 1 | _ | |a Lüth, Hans |0 P:(DE-Juel1)128608 |b 9 |u fzj |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 10 |u fzj |
700 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 11 |
773 | _ | _ | |a 10.1021/acs.nanolett.3c00905 |g Vol. 23, no. 14, p. 6347 - 6353 |0 PERI:(DE-600)2048866-X |n 14 |p 6347 - 6353 |t Nano letters |v 23 |y 2023 |x 1530-6984 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1014690/files/acs.nanolett.3c00905.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1014690 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180161 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171826 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)178707 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)180184 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)176848 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)165984 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128608 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)128634 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |0 PC:(DE-HGF)0122 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-30 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2022 |d 2023-10-24 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|