001014692 001__ 1014692
001014692 005__ 20231027114414.0
001014692 0247_ $$2doi$$a10.1021/acsami.3c05366
001014692 0247_ $$2ISSN$$a1944-8244
001014692 0247_ $$2ISSN$$a1944-8252
001014692 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03397
001014692 0247_ $$2pmid$$a37432886
001014692 0247_ $$2WOS$$aWOS:001027014400001
001014692 037__ $$aFZJ-2023-03397
001014692 082__ $$a600
001014692 1001_ $$0P:(DE-Juel1)176246$$aBui, Minh N.$$b0$$eCorresponding author
001014692 245__ $$aOptical Properties of MoSe 2 Monolayer Implanted with Ultra-Low-Energy Cr Ions
001014692 260__ $$aWashington, DC$$bSoc.$$c2023
001014692 3367_ $$2DRIVER$$aarticle
001014692 3367_ $$2DataCite$$aOutput Types/Journal article
001014692 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1696944118_320
001014692 3367_ $$2BibTeX$$aARTICLE
001014692 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014692 3367_ $$00$$2EndNote$$aJournal Article
001014692 520__ $$aThis paper explores the optical properties of an exfoliated MoSe2 monolayer implanted with Cr+ ions, accelerated to 25 eV. Photoluminescence of the implanted MoSe2 reveals an emission line from Cr-related defects that is present only under weak electron doping. Unlike band-to-band transition, the Cr-introduced emission is characterized by nonzero activation energy, long lifetimes, and weak response to the magnetic field. To rationalize the experimental results and get insights into the atomic structure of the defects, we modeled the Cr-ion irradiation process using ab initio molecular dynamics simulations followed by the electronic structure calculations of the system with defects. The experimental and theoretical results suggest that the recombination of electrons on the acceptors, which could be introduced by the Cr implantation-induced defects, with the valence band holes is the most likely origin of the low-energy emission. Our results demonstrate the potential of low-energy ion implantation as a tool to tailor the properties of two-dimensional (2D) materials by doping.
001014692 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001014692 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014692 7001_ $$0P:(DE-HGF)0$$aRost, Stefan$$b1
001014692 7001_ $$0P:(DE-HGF)0$$aAuge, Manuel$$b2
001014692 7001_ $$0P:(DE-HGF)0$$aZhou, Lanqing$$b3
001014692 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b4$$ufzj
001014692 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5
001014692 7001_ $$0P:(DE-HGF)0$$aKretschmer, Silvan$$b6
001014692 7001_ $$0P:(DE-HGF)0$$aKrasheninnikov, Arkady V.$$b7
001014692 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b8
001014692 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b9
001014692 7001_ $$0P:(DE-HGF)0$$aHofsäss, Hans C.$$b10
001014692 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b11$$ufzj
001014692 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b12$$eCorresponding author$$ufzj
001014692 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.3c05366$$gVol. 15, no. 29, p. 35321 - 35331$$n29$$p35321 - 35331$$tACS applied materials & interfaces$$v15$$x1944-8244$$y2023
001014692 8564_ $$uhttps://juser.fz-juelich.de/record/1014692/files/acsami.3c05366.pdf$$yOpenAccess
001014692 8767_ $$d2023-09-06$$eHybrid-OA$$jPublish and Read
001014692 909CO $$ooai:juser.fz-juelich.de:1014692$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001014692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176246$$aForschungszentrum Jülich$$b0$$kFZJ
001014692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001014692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001014692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b4$$kFZJ
001014692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
001014692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b11$$kFZJ
001014692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b12$$kFZJ
001014692 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001014692 9141_ $$y2023
001014692 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001014692 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001014692 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001014692 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014692 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001014692 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001014692 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001014692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001014692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001014692 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001014692 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001014692 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2023-10-25
001014692 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2023-10-25
001014692 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001014692 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001014692 980__ $$ajournal
001014692 980__ $$aVDB
001014692 980__ $$aUNRESTRICTED
001014692 980__ $$aI:(DE-Juel1)PGI-9-20110106
001014692 980__ $$aI:(DE-Juel1)PGI-1-20110106
001014692 980__ $$aAPC
001014692 9801_ $$aAPC
001014692 9801_ $$aFullTexts