001     1014693
005     20240712112825.0
024 7 _ |a 10.1021/acsami.3c05878
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03398
|2 datacite_doi
024 7 _ |a 37442800
|2 pmid
024 7 _ |a WOS:001029685700001
|2 WOS
037 _ _ |a FZJ-2023-03398
082 _ _ |a 600
100 1 _ |a Lu, Xin
|0 P:(DE-Juel1)180280
|b 0
|e Corresponding author
245 _ _ |a Li-Ion Conductivity of Single-Step Synthesized Glassy-Ceramic Li 10 GeP 2 S 12 and Post-heated Highly Crystalline Li 10 GeP 2 S 12
260 _ _ |a Washington, DC
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1698914653_24778
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Li10GeP2S12 is a phosphosulfide solid electrolyte that exhibits exceptionally high Li-ion conductivity, reaching a conductivity above 10–3 S cm–1 at room temperature, rivaling that of liquid electrolytes. Herein, a method to produce glassy-ceramic Li10GeP2S12 via a single-step utilizing high-energy ball milling was developed and systematically studied. During the high energy milling process, the precursors experience three different stages, namely, the ‘Vitrification zone’ where the precursors undergo homogenization and amorphization, ‘Intermediary zone’ where Li3PS4 and Li4GeS4 are formed, and the ‘Product stage’ where the desired glassy-ceramic Li10GeP2S12 is formed after 520 min of milling. At room temperature, the as-milled sample achieved a high ionic conductivity of 1.07 × 10–3 S cm–1. It was determined via quantitative phase analyses (QPA) of transmission X-ray diffraction results that the as-milled Li10GeP2S12 possessed a high degree of amorphization (44.4 wt %). To further improve the crystallinity and ionic conductivity of the Li10GeP2S12, heat treatment of the as-milled sample was carried out. The optimal heat-treated Li10GeP2S12 is almost fully crystalline and possesses a room temperature ionic conductivity of 3.27 × 10–3 S cm–1, an over 200% increase compared to the glassy-ceramic Li10GeP2S12. These findings help provide previously lacking insights into the controllable preparation of Li10GeP2S12 material.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)188297
|b 1
700 1 _ |a Schmidt, Dana
|0 P:(DE-Juel1)192424
|b 2
700 1 _ |a Schöner, Sandro
|0 P:(DE-Juel1)194730
|b 3
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 4
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 5
700 1 _ |a Liao, Xunfan
|0 0000-0002-6649-5865
|b 6
700 1 _ |a Chen, Yiwang
|0 0000-0003-4709-7623
|b 7
700 1 _ |a Yu, Shicheng
|0 P:(DE-Juel1)161141
|b 8
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 9
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 10
773 _ _ |a 10.1021/acsami.3c05878
|g Vol. 15, no. 29, p. 34973 - 34982
|0 PERI:(DE-600)2467494-1
|n 29
|p 34973 - 34982
|t ACS applied materials & interfaces
|v 15
|y 2023
|x 1944-8244
856 4 _ |u https://juser.fz-juelich.de/record/1014693/files/lu-et-al-2023-li-ion-conductivity-of-single-step-synthesized-glassy-ceramic-li10gep2s12-and-post-heated-highly.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014693
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180280
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)192424
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)192424
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)194730
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 10
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21