Hauptseite > Workflowsammlungen > Publikationsgebühren > Li-Ion Conductivity of Single-Step Synthesized Glassy-Ceramic Li 10 GeP 2 S 12 and Post-heated Highly Crystalline Li 10 GeP 2 S 12 > print |
001 | 1014693 | ||
005 | 20240712112825.0 | ||
024 | 7 | _ | |a 10.1021/acsami.3c05878 |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-03398 |2 datacite_doi |
024 | 7 | _ | |a 37442800 |2 pmid |
024 | 7 | _ | |a WOS:001029685700001 |2 WOS |
037 | _ | _ | |a FZJ-2023-03398 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Lu, Xin |0 P:(DE-Juel1)180280 |b 0 |e Corresponding author |
245 | _ | _ | |a Li-Ion Conductivity of Single-Step Synthesized Glassy-Ceramic Li 10 GeP 2 S 12 and Post-heated Highly Crystalline Li 10 GeP 2 S 12 |
260 | _ | _ | |a Washington, DC |c 2023 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1698914653_24778 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Li10GeP2S12 is a phosphosulfide solid electrolyte that exhibits exceptionally high Li-ion conductivity, reaching a conductivity above 10–3 S cm–1 at room temperature, rivaling that of liquid electrolytes. Herein, a method to produce glassy-ceramic Li10GeP2S12 via a single-step utilizing high-energy ball milling was developed and systematically studied. During the high energy milling process, the precursors experience three different stages, namely, the ‘Vitrification zone’ where the precursors undergo homogenization and amorphization, ‘Intermediary zone’ where Li3PS4 and Li4GeS4 are formed, and the ‘Product stage’ where the desired glassy-ceramic Li10GeP2S12 is formed after 520 min of milling. At room temperature, the as-milled sample achieved a high ionic conductivity of 1.07 × 10–3 S cm–1. It was determined via quantitative phase analyses (QPA) of transmission X-ray diffraction results that the as-milled Li10GeP2S12 possessed a high degree of amorphization (44.4 wt %). To further improve the crystallinity and ionic conductivity of the Li10GeP2S12, heat treatment of the as-milled sample was carried out. The optimal heat-treated Li10GeP2S12 is almost fully crystalline and possesses a room temperature ionic conductivity of 3.27 × 10–3 S cm–1, an over 200% increase compared to the glassy-ceramic Li10GeP2S12. These findings help provide previously lacking insights into the controllable preparation of Li10GeP2S12 material. |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |0 G:(DE-Juel1)HITEC-20170406 |c HITEC-20170406 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Windmüller, Anna |0 P:(DE-Juel1)188297 |b 1 |
700 | 1 | _ | |a Schmidt, Dana |0 P:(DE-Juel1)192424 |b 2 |
700 | 1 | _ | |a Schöner, Sandro |0 P:(DE-Juel1)194730 |b 3 |
700 | 1 | _ | |a Tsai, Chih-Long |0 P:(DE-Juel1)156244 |b 4 |
700 | 1 | _ | |a Kungl, Hans |0 P:(DE-Juel1)157700 |b 5 |
700 | 1 | _ | |a Liao, Xunfan |0 0000-0002-6649-5865 |b 6 |
700 | 1 | _ | |a Chen, Yiwang |0 0000-0003-4709-7623 |b 7 |
700 | 1 | _ | |a Yu, Shicheng |0 P:(DE-Juel1)161141 |b 8 |
700 | 1 | _ | |a Tempel, Hermann |0 P:(DE-Juel1)161208 |b 9 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 10 |
773 | _ | _ | |a 10.1021/acsami.3c05878 |g Vol. 15, no. 29, p. 34973 - 34982 |0 PERI:(DE-600)2467494-1 |n 29 |p 34973 - 34982 |t ACS applied materials & interfaces |v 15 |y 2023 |x 1944-8244 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1014693/files/lu-et-al-2023-li-ion-conductivity-of-single-step-synthesized-glassy-ceramic-li10gep2s12-and-post-heated-highly.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1014693 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180280 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)188297 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)192424 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)192424 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)194730 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)156244 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)157700 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)161141 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)161208 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 10 |6 P:(DE-Juel1)156123 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |0 PC:(DE-HGF)0122 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-11 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2023-10-25 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2023-10-25 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|