001014695 001__ 1014695
001014695 005__ 20231012201831.0
001014695 037__ $$aFZJ-2023-03400
001014695 041__ $$aEnglish
001014695 1001_ $$0P:(DE-Juel1)185906$$aMontanez Huaman, Liz Margarita$$b0$$ufzj
001014695 1112_ $$aJoint European Magnetic Symposia$$cMadrid$$d2023-08-27 - 2023-09-01$$gJEMS2023$$wSpain
001014695 245__ $$aTuning of Room Temperature Skyrmions in Pt/Co/Ta Multilayers
001014695 260__ $$c2023
001014695 3367_ $$033$$2EndNote$$aConference Paper
001014695 3367_ $$2BibTeX$$aINPROCEEDINGS
001014695 3367_ $$2DRIVER$$aconferenceObject
001014695 3367_ $$2ORCID$$aCONFERENCE_POSTER
001014695 3367_ $$2DataCite$$aOutput Types/Conference Poster
001014695 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1697093973_15204$$xAfter Call
001014695 520__ $$aMagnetic skyrmions are nanoscale topological objects which are promising for next-generation information storage technologies and computing. [1,2] In magnetic multilayers, they can be stabilized at room temperature. [3-5]. Skyrmions emerge due to an interplay between several magnetic contributions. Among them the interfacial Dzyaloshinskii-Moriya Interaction (DMI) drives the spins into non-collinear orientation, while the perpendicular magnetic anisotropy (PMA) favours the out-of-plane orientation and the shape anisotropy prefers in-plane spin orientation. To study this competition of energies and the appearance of skyrmions, we have varied the Co film thickness as well as the number of repetitions in [Pt/Co(x)/Ta]$_N$ multilayers. This multilayer system was chosen because it is an established multilayer system for skyrmions and results can be compared with existing investigations, like e.g. [3,6].Polycrystalline [Pt(40 Å)/Co(x)/Ta(19 Å)]$_N$ multilayers were fabricated in a molecular beam epitaxy setup by thermal deposition on oxidized Si(001) substrates with a buffer layer of 47 Å Ta and a 30 Å Pt cap layer. The Co film thickness was varied between 5 Å and 21 Å, the number of repetitions varied between 8 and 10.Magnetic force microscopy measurements reveal the existence of skyrmions at a Co thickness between 9Å and 17 Å. The figure below gives examples with varying thickness and number of repetitions in indicated magnetic field. The density of skyrmions as well as their size varies. In remanence, stable skyrmions form only for the 17 Å Co sample with N=10 otherwise worm domains develop. Topological Hall effect measurements confirm these observations. The relationship between these findings is discussed in this contribution.References [1] A. Fert, V. Cros, and J. Sampaio, Nature Nanotech 8 (2013) 152. [2] K. Raab, M.A. Brems, G. Beneke, et al., Nat Commun 13 (2022) 6982. [3] S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter et al., Nat. Mat. 15 (2016) 501 [4] A. Soumyanarayanan, M. Raju, A. Gonzalez Oyarce, et al., Nature Mater 16 (2017) 898. [5] T.Dohi, R.M.Reeve and M. Kläui, Annu Rev. Condens. Matter Phys. 13 (2022) 73. [6] S.Zhang, J.Zhang, Y.Wen, E.M.Chudnovsky, and Y.Zhang, Comms. Phys. 36 (2018) 1.
001014695 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001014695 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001014695 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001014695 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001014695 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
001014695 7001_ $$0P:(DE-HGF)0$$aAhrens, Valentin$$b1
001014695 7001_ $$0P:(DE-HGF)0$$aGuasco, Laura$$b2
001014695 7001_ $$0P:(DE-HGF)0$$aKeller, Thomas$$b3
001014695 7001_ $$0P:(DE-HGF)0$$aBecherer, Markus$$b4
001014695 7001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b5$$eCorresponding author$$ufzj
001014695 909CO $$ooai:juser.fz-juelich.de:1014695$$pVDB$$pVDB:MLZ
001014695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185906$$aForschungszentrum Jülich$$b0$$kFZJ
001014695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b5$$kFZJ
001014695 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001014695 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001014695 9141_ $$y2023
001014695 920__ $$lyes
001014695 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
001014695 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
001014695 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001014695 980__ $$aposter
001014695 980__ $$aVDB
001014695 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001014695 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001014695 980__ $$aI:(DE-588b)4597118-3
001014695 980__ $$aUNRESTRICTED