001014709 001__ 1014709
001014709 005__ 20240213111725.0
001014709 0247_ $$2doi$$a10.1016/j.atech.2023.100306
001014709 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03404
001014709 0247_ $$2WOS$$aWOS:001133851100001
001014709 037__ $$aFZJ-2023-03404
001014709 041__ $$aEnglish
001014709 082__ $$a630
001014709 1001_ $$0P:(DE-Juel1)180899$$aJollet, Dirk$$b0$$eFirst author
001014709 245__ $$aA new computer vision workflow to assess yield quality traits in bush bean (Phaseolus vulgaris L.)
001014709 260__ $$a[Amsterdam]$$bElsevier B.V.$$c2023
001014709 3367_ $$2DRIVER$$aarticle
001014709 3367_ $$2DataCite$$aOutput Types/Journal article
001014709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700147967_18876
001014709 3367_ $$2BibTeX$$aARTICLE
001014709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014709 3367_ $$00$$2EndNote$$aJournal Article
001014709 500__ $$aGrant: IGF-Vorhaben 20943N
001014709 520__ $$aQuality assessments of horticultural products are still often carried out manually in breeding contexts, although computer vision systems have been reported to be able to overcome the limitations of manual assessments, e.g. in automated food processing. Here, a new computer vision workflow for quality trait assessment of bush bean pods (Phaseolus vulgaris) is introduced to replace physical measurements and visual scorings of expert breeders, while increasing consistency, accuracy, and objectivity of the measurements. A closed imaging box was used to take images of bean pods from 40 different varieties to develop and validate computer vision workflows to assess breeding relevant shape and color traits of bean pods. For the detection of beaks and peduncles via a neural network approach (Mask R-CNN) accuracies of 95.5% were reached. Computer vision estimations and manual reference measurements of length and caliber were highly correlated (R=0.99). Also, curvature and brightness of green bean pods well- correlated with visual scorings of expert breeders (R=0.81, R=-0.87). A Random Forest Classifier was trained to distinguish yellow and extremely rare bicolored pods and a cross validation accuracy of 83 ±7% was reached. An additional backlight LED panel enabled non-destructive analysis of seed formation inside the pod and promising results were achieved using a Faster R-CNN model. This new computer vision workflow provides the opportunity to replace well-established manual workflows for quality trait assessment of bush bean pods as it is more objective, reliable, and considerably faster.
001014709 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001014709 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014709 7001_ $$0P:(DE-Juel1)168454$$aJunker-Frohn, Laura$$b1$$ufzj
001014709 7001_ $$0P:(DE-Juel1)161457$$aSteier, Angelina$$b2$$ufzj
001014709 7001_ $$0P:(DE-HGF)0$$aMeyer-Lüpken, T.$$b3
001014709 7001_ $$0P:(DE-Juel1)142555$$aMüller-Linow, Mark$$b4$$eCorresponding author$$ufzj
001014709 773__ $$0PERI:(DE-600)3094269-X$$a10.1016/j.atech.2023.100306$$gVol. 5, p. 100306 -$$p100306 -$$tSmart agricultural technology$$v5$$x2772-3755$$y2023
001014709 8564_ $$uhttps://juser.fz-juelich.de/record/1014709/files/1-s2.0-S2772375523001351-main.pdf$$yOpenAccess
001014709 8564_ $$uhttps://juser.fz-juelich.de/record/1014709/files/Jollet%20et%20al_re-submission_JUSER_version.docx$$yOpenAccess
001014709 909CO $$ooai:juser.fz-juelich.de:1014709$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001014709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168454$$aForschungszentrum Jülich$$b1$$kFZJ
001014709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161457$$aForschungszentrum Jülich$$b2$$kFZJ
001014709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142555$$aForschungszentrum Jülich$$b4$$kFZJ
001014709 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001014709 9141_ $$y2023
001014709 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014709 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014709 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-09-05
001014709 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2023-09-05
001014709 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-22T13:01:47Z
001014709 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-22T13:01:47Z
001014709 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-10-22T13:01:47Z
001014709 920__ $$lno
001014709 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001014709 980__ $$ajournal
001014709 980__ $$aVDB
001014709 980__ $$aUNRESTRICTED
001014709 980__ $$aI:(DE-Juel1)IBG-2-20101118
001014709 9801_ $$aFullTexts