001     1014709
005     20240213111725.0
024 7 _ |a 10.1016/j.atech.2023.100306
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03404
|2 datacite_doi
024 7 _ |a WOS:001133851100001
|2 WOS
037 _ _ |a FZJ-2023-03404
041 _ _ |a English
082 _ _ |a 630
100 1 _ |a Jollet, Dirk
|0 P:(DE-Juel1)180899
|b 0
|e First author
245 _ _ |a A new computer vision workflow to assess yield quality traits in bush bean (Phaseolus vulgaris L.)
260 _ _ |a [Amsterdam]
|c 2023
|b Elsevier B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1700147967_18876
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Grant: IGF-Vorhaben 20943N
520 _ _ |a Quality assessments of horticultural products are still often carried out manually in breeding contexts, although computer vision systems have been reported to be able to overcome the limitations of manual assessments, e.g. in automated food processing. Here, a new computer vision workflow for quality trait assessment of bush bean pods (Phaseolus vulgaris) is introduced to replace physical measurements and visual scorings of expert breeders, while increasing consistency, accuracy, and objectivity of the measurements. A closed imaging box was used to take images of bean pods from 40 different varieties to develop and validate computer vision workflows to assess breeding relevant shape and color traits of bean pods. For the detection of beaks and peduncles via a neural network approach (Mask R-CNN) accuracies of 95.5% were reached. Computer vision estimations and manual reference measurements of length and caliber were highly correlated (R=0.99). Also, curvature and brightness of green bean pods well- correlated with visual scorings of expert breeders (R=0.81, R=-0.87). A Random Forest Classifier was trained to distinguish yellow and extremely rare bicolored pods and a cross validation accuracy of 83 ±7% was reached. An additional backlight LED panel enabled non-destructive analysis of seed formation inside the pod and promising results were achieved using a Faster R-CNN model. This new computer vision workflow provides the opportunity to replace well-established manual workflows for quality trait assessment of bush bean pods as it is more objective, reliable, and considerably faster.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Junker-Frohn, Laura
|0 P:(DE-Juel1)168454
|b 1
|u fzj
700 1 _ |a Steier, Angelina
|0 P:(DE-Juel1)161457
|b 2
|u fzj
700 1 _ |a Meyer-Lüpken, T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller-Linow, Mark
|0 P:(DE-Juel1)142555
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.atech.2023.100306
|g Vol. 5, p. 100306 -
|0 PERI:(DE-600)3094269-X
|p 100306 -
|t Smart agricultural technology
|v 5
|y 2023
|x 2772-3755
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1014709/files/1-s2.0-S2772375523001351-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1014709/files/Jollet%20et%20al_re-submission_JUSER_version.docx
909 C O |o oai:juser.fz-juelich.de:1014709
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168454
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142555
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2023-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-22T13:01:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-22T13:01:47Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-10-22T13:01:47Z
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21