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A B S T R A C T   

Quality assessments of horticultural products are still often carried out manually in breeding contexts, although 
computer vision systems have been reported to be able to overcome the limitations of manual assessments, e.g. in 
automated food processing. Here, a new computer vision workflow for quality trait assessment of bush bean pods 
(Phaseolus vulgaris) is introduced to replace physical measurements and visual scorings of expert breeders, while 
increasing consistency, accuracy, and objectivity of the measurements. A closed imaging box was used to take 
images of bean pods from 40 different varieties to develop and validate computer vision workflows to assess 
breeding relevant shape and color traits of bean pods. For the detection of beaks and peduncles via a neural 
network approach (Mask R-CNN) accuracies of 95.5% were reached. Computer vision estimations and manual 
reference measurements of length and caliber were highly correlated (R=0.99). Also, curvature and brightness of 
green bean pods well- correlated with visual scorings of expert breeders (R=0.81, R=-0.87). A Random Forest 
Classifier was trained to distinguish yellow and extremely rare bicolored pods and a cross validation accuracy of 
83 ±7% was reached. An additional backlight LED panel enabled non-destructive analysis of seed formation 
inside the pod and promising results were achieved using a Faster R-CNN model. This new computer vision 
workflow provides the opportunity to replace well-established manual workflows for quality trait assessment of 
bush bean pods as it is more objective, reliable, and considerably faster.   

1. Introduction 

Bush bean (Phaseolus vulgaris L.) is the most important legume 
worldwide and provides essential nutrients such as proteins, calories, 
dietary fibers, B-complex vitamins, and minerals for the diet of a large 
part of the world’s population [1,2]. Bush bean breeding programs not 
only focus on parameters such as yield and nutrient content, but also on 
stress tolerance, industrial processability and the visual appearance of 
the bean pods, which affect the market value. The market value of bush 
bean is generally determined by yield quality traits related to the bean 
pod shape like length, caliber, and curvature and also by the color 
impression [3–5]. Other properties that determine the pod shape and 
also affect mouthfeel during eating are related to the number and size of 
seeds inside the pod and the seed arrangement [3]. In addition to the 
above attributes, it is desirable, for mechanical harvesting, to breed 
varieties which can be gathered without the peduncle to ease further 
processing [6]. 

For many crops, including beans, evaluation of fruit quality traits is 

performed through visual assessments and manual measurements. This 
approach is labor-intensive and requires skilled raters, making it the 
bottle neck in today’s breeding programs [7]. Some traits, such as the 
arrangement of seeds within pods, are scored non-destructively. 
Therefor they are evaluated indirectly, e.g. by tactile sensing of the 
outer shape of the pod. In addition, visual scoring of traits is subject to 
the individual perception of the rater and can additionally be affected by 
environmental conditions, such as lighting quality and interference by 
ambient lighting. Consequently, scores of different raters can vary 
distinctly and even the results of each rater may show noticeable 
day-by-day variations [8,9]. Manual measurements may be subject to 
deviations as well, e.g. as a result of individual implementations within 
established protocols. To overcome this bottleneck, novel approaches 
are required that are reliable, objective and fast [9,10] and therefore 
also make sense from an economical point of view [11]. 

In recent years, a lot of effort has been put into the development and 
application of various imaging methodologies for horticultural crop 
phenotyping, including spectral [12,13], thermal [14,15], or 3D 
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imaging [16]. The majority of studies used RGB (Red-Green-Blue) im
aging, e.g. to assess the shoot and root morphology of carrots [17], or to 
determine the size of banana fruits [18]. Advantages of RGB imaging 
systems are that they are low cost, rapid image acquisition, high reso
lution, and relatively easy implementation [19,7]. 

However, image analysis can be a complex task and, to date, com
puter vision methods have been developed only for a small range of 
vegetable crops. Fruit detection methods have been used to predict the 
yield and are also a prerequisite for the development of automatic 
harvest methods [20]. A common use-case are tomatoes. Red mature 
tomato fruits were detected on greenhouse-grown plants using con
ventional image processing approaches like the segmentation in the 
Hue-Saturation-Value (HSV) color space and morphological trans
formations [21]. Machine learning approaches like X-mean clustering 
and Random Forest Classification (RFCs) have been successfully applied 
in the detection of mature, immature, and young tomato fruits of 
greenhouse-grown plants [22]. In recent years, deep learning ap
proaches offered new opportunities to process complex, high-level ab
stract and heterogeneous images [23]. Mask region-based convolutional 
neural networks (Mask R-CNNs) were applied for instance segmentation 
tasks, i.e. to detect, classify and mask objects in images [24]. This 
approach was used to detect green and red tomato fruits in images of 
tomato plants, which were acquired under changing illumination con
ditions in an experimental greenhouse setup with a set of standard RGB 
cameras [25]. 

Only a few studies focused on quality traits of the harvested fruits. 
Contour-based features of cut tomato fruits were assessed with a contour 
feature extraction method [26]. A similar approach was used by Torres 
et al. (2012) and Polder et al. (2012), who quantitatively measured 
different shape traits like length, area, or beak area of green bean pods 
[4,27]. Another approach that features different machine learning 
techniques helped to analyze maize cops and their kernels [29]. In this 
study, a Fast Fourier Transform was applied to measure the average 
space each kernel occupies along the cob axis, while the kernel contour 
was analyzed with a Bayesian approach to identify the beak [28]. In 
another work, RFC of contour features of bean pods was applied to 
identify beaks and peduncles. However, finding the correct cutting point 
to remove these complex and non-uniform structures for further analysis 
was still error prone [29]. Another study classified green coffee beans by 
subtle differences in color using neural networks and Bayesian classifier 
[30]. 

In this study, we present a number of new validated methods to 
analyze various shape and chromatic traits of bean pods using a com
bination of conventional image processing, machine and deep learning. 
Our approach robustly identifies beaks and peduncles and masks them 
for further analysis of length, caliber and curvature. In addition, the 
number of detected peduncles and beaks provides information about the 
industrial processability. We also developed a new method to quantify 
chromatic bean pod traits which reflect typical properties of the 
breeders’ scoring scheme like hue and brightness. The quality of 
assessment of shape and color traits was validated using a dataset of 40 
varieties with 400 bean pods in total (green and yellow bean pods with 
different cross-sectional profiles) that were scored physically by 
breeding experts in tandem with our computer vision workflow. In the 
last part, a novel imaging setup using backlight combined with deep 
learning analysis was developed to characterize the uniformity of the 
pod’s seed arrangement. This is to our knowledge the first method to 
automatize the analysis of seeds inside the pod. The method was vali
dated with a dataset of 117 bean pods of two contrasting varieties. 

2. Methods and materials 

2.1. Plant material 

The computer vision workflow for peduncle and beak classification 
and analysis of pod length, caliber, curvature, hue, and brightness of 

green pods was developed and validated with separate data sets, each 
including 40 varieties of bush beans (Phaseolus vulgaris L.) provided by 
van Waaveren Saaten GmbH (Rosdorf, Germany). Among the selected 
cultivars were 31 green and 9 yellow varieties, with some of the yellow 
varieties having an unwanted tendency towards greenish discoloration 
of bean pods (bicolor). Among the green and yellow cultivars, three 
categories were distinguished according to their cross-sectional shape, 
namely Round bean pods with a circular cross-section, Flat bean pods 
with a highly ellipsoid cross-section and Oval bean pods with an inter
mediate shape [5]. The varieties showed a wide variation in average pod 
length, caliber, and curvature, also between individual bean pods Plants 
were grown according to standard practice at a breeder’s field site 
(Rosdorf, Germany) in summer 2021. The field (51.505332, 9.880956) 
was treated with 500kg/ha calcium cyanamide on April 10 to fertilize 
the soil and to antagonize larvae of the bean seed fly (Delia platura). 
Furthermore, an herbicide treatment with 0.5l/ha Spectrum® (BASF, 
Ludwigshafen, Germany) + 0.15l/ha Centium 36CS (FMC Agricultural 
Solutions, Philadelphia, USA) was conducted four days before sowing. 
Sowing was conducted on May 14 with an intra and inter row spacing of 
8cm and 75cm, respectively. To reduce herbivores, plants were treated 
with 0.25kg/ha Pirimor (Syngenta Agro GmbH, Frankfurt, Germany) 
granulate, and 0.075l/ha Karate Zeon (Syngenta Agro GmbH, Frankfurt, 
Germany) on July 21. On July 27 and 28, at BBCH 75-79, fresh maturity 
(green-ripe) plants were harvested by hand. 780 bean pods from 40 
varieties (15-20 pods per variety) were selected so that each group 
included pods with and without peduncles. 

For the analysis of seed arrangement, ten plants of both a green and 
yellow variety were seeded in 3l pots on ED73 substrate (Einheitserde 
Werkverband e.V., Uetersen, Germany) on September 13, 2021 and 
grown under semi-controlled conditions in the greenhouse. Tempera
ture was adjusted to 25/18◦C (day/night), relative humidity to 50% and 
supplemental lighting with MGR-K 400 lamps (DH Licht GmbH, Wül
frath, Germany) to a 16/8h day/night cycle. The two varieties were 
harvested at different maturity stages to assess the robustness of our 
method. In the green variety, 107 bean pods were harvested on October 
28 at very early fresh maturity (BBCH 75-76), so the seeds were rela
tively small. In the yellow variety, 220 pods were harvested on 
November 10 (BBCH 79). In this case, the maximum seed size was 
reached. 

2.2. Visual scorings and physical measurements 

Experienced bean breeders manually and visually assessed bean pod 
traits according to their standard practice to gather reference data for 
the CV algorithm validation. The used standard practices differ from 
phenotypic bean pod characterization according to UPOV (International 
Union for the Protection of New Varieties of Plants) guidelines for some 
traits, as the used scales allow a more subtle evaluation of the pods. 
Nevertheless, a pod characterization of all used varieties according to 
UPOV guidelines was added (supplement 1) for better comparison to 
other studies. It was recorded, if the bean pod had a peduncle and a 
beak. Pod length was measured as the distance between beak and 
peduncle base with a ruler by unbending the pod as far as possible 
without breaking it. The caliber was measured with a circle drawing 
template (0.5 mm resolution). The curvature, hue, and brightness (only 
for green bean pods) were assessed visually. Bean pod curvature was 
assessed on a scoring from 1, straight, to 9, highly curved (more than 
crescent). As straight bean pods are favored in breeding programs [6], 
the visual scale distinguishes pods with low curvature (scoring class 1-4) 
more subtly than cases with higher curvature (5-9). Green bean pod 
varieties are bred to be moderate green to dark green [6]. The brightness 
impression of green-colored pods (green brightness) was also scored 
visually with numbers between 1 (whitish bean pod) to 9 (dark green 
pod). For yellow bean pods, brightness is irrelevant for consumer de
cisions, but any greenish discolorations are unwanted, as they are 
perceived as low-quality. Such bean pods were classified as bicolor. 
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Breeders usually assess seed numbers and further properties of the 
seed arrangement by evaluating the outlining of the individual seed 
bulging. As this turned out to be erroneous, it was scored visually on the 
transmitted light images. Gaps between two seeds or between the beak 
and a seed were assigned to the class of abortions and usually occur, if 
seeds have not been formed. Missing seeds in the upper fourth of the 
proximal end of the pod are referred to as swan necks. 

2.3. Hardware setup and imaging workflow 

A customized imaging box with stucco surface reflective walls was 
used for imaging the bean pods. The top of the imaging box was 
completely covered by a LED panel with integrated camera opening in 
the center (Effilux, Huerth, Germany). The panel was used with an 
illuminance of 40000lx (at 0cm distance). The base plate covered an 
area of 50 × 38 cm and consisted of a robust blue polypropylene plate 
(Item, Solingen, Germany), whose color and low reflectance properties 
facilitated the pod detection. The distance between camera lens and 
target area was 80cm. Images were acquired with an industrial RGB 
camera Manta G-507 (Allied Vision, Stadtroda, Germany, 5MP) equipped 
with a 12mm FL-CC1218-5MX lens (Ricoh, Rungis, France). The pixel- 
metric was converted to the mm-metric according to a calibration 
method, introduced in Zhang (1998) [31]. At the same time, we checked 
for considerable radial distortions, which were not observed at 80cm 
imaging distance (see also [29]). The camera was operated via the Vimba 
Viewer 5.1 Software (Allied Vision, Stadtroda, Germany). The exposure 
time was set to 1.4ms with a gain of 0 and a gamma-value of 1. The white 
balance was performed with the color calibration target ColorChecker 
Passport Photo 2 (Xrite, Planegg-Martinsried, Germany); values of 2.4 
and 2.0 were fixed for the red and the blue channel. The ColorChecker 
was further used to validate that no changes in illumination occured 
during the 16h of system runtime. Bean pods were placed in the imaging 
box right after the visual inspection by the expert breeder. One image 
per variety each with 10 bean pods was acquired (Fig. 1a). Bean pods 
were arranged on the base plate from left to right in order of the refer
ence measurements (see Fig. 1b). It was paid attention that bean pods 
did not touch each other or exceed the borders of the blue base plate. 

The same box, but equipped with an LED backlight panel, was used 
to facilitate the detection of seeds, abortions and swan necks in bean 
pods by highlighting seeds due to their lower transmittance. For this 
mode, a LEDP260C LED backlight panel (GODOX Photo Equipment Co. 
Ltd, Shenzhen, China) was mounted on the base plate, while the top LED 
panel was turned off. The light intensity of the backlight LED was 
adjusted to optimize the contrast between seeds and pod. Images of 
green bean pods were acquired with an illuminance of 14000lx and an 
exposure time of 8ms. Yellow bean pods, which are more translucent, 
were imaged with an illuminance of 4000lx (measured at 0cm) and an 
exposure time of 15ms. For each variety, 6 images of a set of 10 bean 
pods (in some cases only 9 depending on the availability) were acquired, 
as this was the maximum number of bean pods that fit on the LED 
backlight. 

2.4. Image processing and digital scoring 

2.4.1. Frame conditions and image pre-processing 
Image processing tools were developed with Python 3.9 [32] using 

Numpy 1.20.2 [33], OpenCV 4.5.1.48 [34], scikit-learn 1.0.1 [35] li
braries, and the Detectron2 [36] framework from Meta AI (formerly: 
Facebook AI, Menlo Park, USA). The development of computer vision 
(CV) methods for curvature and green brightness as well as neural 
network training (mask R-CNN) for beak and peduncle detection and 
localization was realized using 380 images of single bean pods. The 
validation was based on 400 images. For the characterization of the seed 
arrangement, a neural network was trained with 210 backlight images 
(160 of yellow and 50 of green pods). The prediction was conducted 
with a separate image set of 57 green pods and 60 yellow pods. Before 

analysis, RGB images were pre-processed as follows: For a robust pod 
segmentation, everything outside the blue background as well as the 
ColorChecker (containing green patches) was masked out (Fig. 1b). 
Illumination gradients at the bottom of the imaging box were corrected 
with a 2D Gaussian distribution function. Furthermore, the RGB image 
was converted to the Hue-Saturation-Value (HSV) color space. Pixels 
that belonged to bean pods were separated from background pixels by 
thresholding the hue channel (OpenCV value range: 0-179) with values 
below a predefined threshold, in our case 80. Next, the image was 
automatically split up into image sections each containing a single 
complete bean pod that was analyzed as follows. 

2.4.2. Detection of peduncles and beaks 
To find and classify peduncles and beaks of the pods and mask them 

for further analysis, a mask region based convolutional neural network 
(Mask R-CNN) from the Detectron2 framework was employed (pre- 
trained with ImageNet data from Detectron2; Model Zoo1 [37]), with a 
Feature Pyramid Backbone Network, a ResNet backbone of 101 layers and 
a 3x learning rate schedule. For the training, the beak and peduncle 
classes were annotated in 380 images each with a single bean pod using 
the VGG Image Annotator [38]. The dataset was split into 295 training 
and 85 validation images resulting in a training data set of 293 labeled 
beaks and 164 peduncles, and a validation data set of 83 labeled beaks 
and 47 peduncles. The default setting (from Detectron2) of training 
hyperparameters was used except for the batch size per image and the 
base learning rate that were adjusted to 256 and 0.00025, respectively. 
The evaluation with the validation dataset was conducted every 1000 
epochs using a continuous increase of the validation loss (3 times) as 
stop criterion. The training stopped after 35000 epochs. For augmen
tation, the shortest edge was resized to 100 pixels keeping the aspect 
ratio of the images unchanged to get a standardizedinput for the 
network. Images were randomly flipped and rotated between 1-360 
degrees to simulate all kind of possible bean pod orientations. Satura
tion, brightness and contrast were randomly adjusted between 0.75 and 
1.25. For inference, the weights at the validation stop were used with a 
confidence threshold of 0.5. The class predictions were used to estimate 
the percentage of pods with peduncles and to compute the masks to 
delete peduncles and beaks in the images for further analysis. 

2.4.3. Length, caliber, and curvature 
A binary mask was computed from each detected pod (beaks and 

peduncles excluded). A center line, which corresponds to the pod length, 
was obtained by computing the topological skeleton and refining the 
results with iterative pruning (details are given in [29]). The pod length 
was then estimated by calculating the length of the center line (Fig. 1b) 
with the arclength function (OpenCV). The caliber was estimated by 
finding the maximum width of the mask along the pod’s center line. For 
this purpose, mask widths were measured orthogonally at any position 
of the center line by applying local linear fits on the surrounding 40 
center line pixels [29]. The estimate of pod curvature was also based on 
the center line position. A cartesian coordinate system was aligned to the 
center line, such that the line was maximally stretched along the x-axis. 
As a result, only one y-value per x-axis position is given except for rare 
cases of extremely crooked pods. A fifth-degree polynomial function was 
fit to the center line, whose second derivative represents the curvature at 
any point. To match the breeder’s visual assessment, which is more 
affected by a curved pod center than crooked ends, the curvature 
function was multiplied by a double symmetrical sigmoid function with 
values between 0 for the pods’ ends and 1 for the center region (see 
supplement 2). The total pod curvature was calculated as the mean of all 
measured curvatures along the center line. 

1 Model ID: 138205316 https://github.com/facebookresearch/detectron2/ 
blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x. 
yaml 

D. Jollet et al.                                                                                                                                                                                                                                    

https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml


Smart Agricultural Technology 5 (2023) 100306

4

2.4.4. Seed arrangement 
RGB images acquired with LED backlight were analyzed with respect 

to the seed number and the presence of abortions and swan necks. Im
ages were processed as described before (see 2.4.1) to obtain image 
sections of single bean pods. To reduce the image content to the essential 
information, all images were transformed to grayscale. For the object 
detection task, a Faster R-CNN (with model features and pre-training2 as 
described for the Mask R-CNN in section 2.4.2) was selected. In total, 
210 images (see 2.1) of single bean pods were labeled with the VGG 
Image Annotator [38] according to the three classes: seeds, abortions, 
and swan necks. The dataset was split into 170 training and 40 valida
tion images. The training data contained 713 labeled seeds, 90 abor
tions, and 75 swan necks. The validation data contained 160 labeled 
seeds, 22 abortions, and 15 swan necks. Hyperparameters for training, 
image augmentation and the stop criterion were set as described in 
section 2.4.2. The training stopped after approximately 15000 epochs. 
The confidence threshold for model predictions was set to 0.5. 

2.4.5. Chromatic traits 
The two chromatic traits hue and green brightness were analyzed 

using the HSV color space, as it represents particular aspects of the 
breeders’ scoring practice, which comprises the two scales hue and 
brightness, as well [39]. The HSV values of the masked bean image were 
analyzed in a two-stage process. In the first step, the hue channel was 
used to separate green bean pods from yellow and bicolor bean pods. 
The percentage of pixels which were green (hue: 35-80) and yellow 
(hue: 15-35) was calculated. Color boundaries were set according to hue 
space definition in [40]. After applying a majority decision, the 90 pods 
that were identified as non-green were analyzed in the second step with 
a RFC model to distinguish between yellow and bicolored pods. The RFC 
model was trained using 10 features: the percentage and the mean hue 
values of green and yellow pixels, and the mean and standard deviation 
of hue, saturation and value of all pod pixels. Data were randomly split 
in 72 training and 18 validation images of single bean pods. The RFC 
model was parametrized as follows (see scikit-learn function Random
ForestClassifier for details): number of decision trees 100; quality criterion 
‘entropy’, which controls the split at each node in the tree, affecting the 
overall tree structure. All other parameters were left unchanged to the 
default settings. In the second step for the pods classified as green, 
brightness was computed from the mean of the value channel. To avoid 
the biasing effect of shade gradients at the pods’ rounded edges, each 
mask was eroded by 15 pixels. 

2.5. Statistical tools for method validation 

The detection of peduncles, beaks, seeds, swan necks, abortions, and 
the hue classification was judged by calculating recall, precision and 
accuracy from confusion matrices, which relate the computer vision 
results to the reference measurements. The detection of seeds and 
abortions was summed up in one statistic (confusion matrix).Separate 
analyses for the numbers of seeds and abortions per pod are presented 
insupplement 3. In addition, the localization accuracy of the Mask R- 
CNN for beaks and peduncles was estimated with the mAP50, which 
describes the mean average precision among all classes at an intersec
tion over union of at least 50% between the labeled and predicted mask. 
For the traits length, caliber, curvature and green brightness the 
agreement between reference and computer vision data was examined 
using regression statistics. Linear regressions were computed using 
polyfit (numpy). The mean absolute percentage error (MAPE) and the 
correlation coefficient I were used as indicators of the performance of 
the method. Outliers were identified visually and a residual analysis was 
conducted to show that the CV methods cover the characteristics of 
different bean pod categories Round, Oval, and Flat. When statistically 
significant differences between the defined categories were observed via 
One-Way Analysis of Variance (ANOVA) effect size computation 
(Cohen’s D) was additionally conducted. The effect size D measures the 
standardized difference between two means and is categorized as fol
lows: small <0.5, medium 0.5-0.8, large >0.8 [41]. For the classification 
of yellow and bicolor pods, a cross validation was conducted (due to the 
limited number of bicolored bean pods) with 10 subgroups and accu
racy_score (scikit-learn). Since the computer vision methods partly build 
on each other, images with inherited errors were manually excluded 
from further analysis to make quantitative statements about the func
tionality of the individual CV methods. For example, the length mea
surement depends on the detection of the mask R-CNN, which is why 
non-detected beaks were excluded from the length analysis. Images 
with non-detected peduncles were not excluded from the analysis, as 
these peduncles hardly influenced the length measurement due to their 
small size. 

3. Results 

3.1. Peduncles and beaks 

The trained mask R-CNN model was used to recognize peduncles and 
beaks on bean pods in order to exclude these components from further 
analysis of length, caliber, and curvature. The network detected most 
peduncles correctly with an accuracy of 95.5% (Fig. 2a, c I–VI; supple
ment 4). 15 peduncles were missed (Fig. 2c VII–IX). In 3 cases, the 
network misclassified beaks as peduncles (Fig. 2c X,XI). Beaks were 

Fig. 1. Image of ten bean pods before (a) and after (b) processing. (b) Mask R-CNN predictions for peduncles (red) and beaks (cyan); the white lines indicate the 
pod’s: center line used for computation of length, and curvature; the yellow lines indicate the positions of caliber measurement. 

2 Model ID: 137851257 https://github.com/facebookresearch/detectron2/ 
blob/main/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml 
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detected with an accuracy of 95.5% (Fig. 2b, c XII–XVII), too. In 17 
cases, the model was not able to detect the beak (Fig. 2c XVIII,XX). In 
two cases, 2 beaks were detected in a single bean pod (Fig. 2c XXI,XXII). 
In one case, the network predicted a beak in the center of the bean pod 
(Fig. 2c XXIII). This image was excluded from further analysis. The 
localization of both peduncles and beaks was very precise as indicated 
by a mAP50 of 92.3% for the validation data set during network 
training. 

3.2. Length, caliber, and curvature 

The computed pod lengths were well in linear accordance with the 
reference measurements conducted with a ruler (Fig. 3a, supplement 4). 
A total of 17 bean pods of 399 where the beak was not detected were 
excluded from the length analysis (Fig. 3a gray points). The regression 
shows a MAPE of 1.7% and a correlation coefficient of R=0.99 (Fig. 3a). 
To assess potential systematic size effects on the CV length analysis, 
residuals of the linear fit of three groups of bean pods were compared via 
One-Way ANOVA. The groups were divided according to Jusoh (2017) 
[5] into short (<120mm), medium (>=120mm, <=150mm), and long 
(>150mm). A p-value of 1 indicated no statistically significant differ
ences between the length groups. 

The caliber was computed from 399 single pod images and compared 
to the reference measurements that were taken with a circle drawing 
template (Fig. 3b, supplement 4). Bean pods which showed their 
narrow-curved side to the camera (6.6% of all bean pods, only pods from 
Oval and Flat categories) were excluded manually from the regression 
analysis. The linear fit displayed a MAPE of 3.3% and a correlation co
efficient of R=0.99. Statistically significant differences were measured 
for the residuals of the regression between all bean pod categories 
(p=0.0008). The highest Cohen’s D of 0.44 was measured for the re
siduals of the categories Round and Flat which still indicates a small 
effect size. This was also reflected by the residual plot which shows an 
even distribution around the zero line (supplement 5). 

The CV estimations of the curvature were compared to the visual 
scorings performed according to breeder’s standard (supplement 4). One 
feature of the breeder’s rating scale was that it required a a more subtle 
gradation for lower curvatures (in our case the scoring classes 1-4), 
because new bean varieties are bred to be as straight as possible. The 
regression indicates a linear accordance between the computed log- 
transformed curvatures and the visual scores. A higher variation was 
observed for the scoring classes 1-4 (Fig. 3c). This was also reflected by a 

MAPE of 13.8% (R=0.81). A good agreement with the fit can also be 
observed when looking at the individual bean pod categories (Fig. 3c). 
No statistically significant differences were measured between residuals 
of the categories Round, Oval, and Flat (p=0.21). Only Flat bean pods of 
the scoring class 4 were underestimated slightly. 

3.3. Seed arrangement 
The seed formation in bean pods was assessed from images acquired 

with the backlight setup. In the yellow variety (Fig. 4a, b), the correct 
location of 93.3% of seeds and abortions was detected by the faster- 
RCNN (Fig. 4a). This result splits up into 96.9% correctly detected 
seeds and 76.7% correctly detected abortions. Pods with swan necks 
were detected in 90% of all cases (Fig. 4b). In comparison, the detection 
accuracy in the green variety (Fig. 4c, d) was only 79.8% in total, namely 
82.9% for seeds and 42.9% for abortions (Fig. 4c). Swan necks were 
detected with an accuracy of 75.4% (Fig. 4d). Fig. 5 shows examples for 
successful (Fig. 5a-c) and non-successful (Fig. 5d) detection of seeds, 
abortions and swan necks. 

3.4. Chromatic traits 

Green bean pods were correctly separated from the yellow and 
bicolor bean pods via hue thresholding (100% accuracy). They were 
further analyzed with respect to the green brightness. The results show a 
clear linear relationship between the reference scores and computed 
green brightness values (Fig. 6, supplement 4). This was reflected by a 
MAPE of 2.1% and a high correlation (R=-0.87). Moreover, the residual 
analysis did not indicate statistically significant differences (p=0.39) 
between the bean pod categories Round, Oval and Flat. In the case of non- 
green pods, the RFC could distinguish between the yellow and the 
bicolor ones with a cross validation accuracy of 83 ±7% (n=10). 

4. Discussion 

The aim of this study was to develop computer vision methods for 
objective, reliable, repeatable, and fast evaluation of fruit quality traits. 
The results of the CV methods were compared to ratings of expert 
breeders for all traits examined, except for the analysis of the seed 
arrangement due to scoring uncertainties (as explained in 2.2). To 
quantify the performance of the methods presented in this manuscript, 
different measures of accuracy were calculated, including classification 
metrics, mean absolute percentage errors (MAPE), and correlation 

Fig. 2. Evaluation of the peduncle (a) and beak (b) classification: The reference values were acquired via visual scorings, the predictions were computed with a Mask 
R-CNN model. C) The model was capable to recognize very differently shaped peduncles and beaks (true positives in the top row peduncles I-III, beaks XII-XIV). 
Rarely, some pod ends were misclassified, e.g. true negatives in the second row (peduncles IV-VI, beaks XV-XVII), false negatives in the third row (peduncles 
VII-IX, beaks XVIII-XX) and false positives in the last row (peduncles X, XI, beaks XXI-XXIII). Red masks indicate peduncles and cyan masks indicate beaks as 
predicted by the Mask R-CNN. 
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Fig. 3. Comparison of reference measurements/scores and 
CV estimations for different shape traits: a) Length, b) Caliber, 
and c) Curvature (n=399). The mean absolute percentage 
error (MAPE) and correlation coefficient R is plotted for all 
three traits. Outliers (grey) in a) indicate missed beak de
tections, n=17; while in b) bean pods of categories Oval and 
Flat that show their curved narrow side to the camera, (n=26) 
were not considered for the computation of the fit.. Stars in c) 
indicate boxplots with n<5.   
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coefficients for regression analysis. In order to test the limits of the 
developed computer vision methods, a wide range of bean varieties with 
a large variation in the investigated traits was analyzed. 

A customized imaging box enabled computer vision methods to accurately 
quantify bean pod characteristics: While imaging under field conditions 
was mainly used for fruit counting and pre-harvest yield assessment of 
beans [42,43], a fully controllable imaging box allows for precise 
evaluations of the traits of individual bean pods with a comparatively 
higher throughput than manual measurements. This applies in partic
ular to the analysis of chromatic traits that require a constant color 
rendering, which is not given under field conditions. One challenge that 
arises from the imaging approach is the reduction of3D information 
using a 2D imaging setup, as bean pods can be analyzed from all sides 

during manual assessments. 
Peduncles and beaks were detected and masked accurately, allowing 

precise analysis of further shape traits: For this study, the detection of 
peduncles is important in two ways. On the one hand, it provides in
formation about the expected proportion of pods with or without pe
duncles and thus about harvest-relevant properties. The high detection 
rate of 94.8% allowed for a precise determination of peduncle occur
rences (Fig. 2a). On the other hand, it is (together with the detection of 
the beaks) an important pre-processing step in order to take correct 
measurements on the pod. Although the second aspect was already 
studied in different crops/fruits by several groups [27,29,44], only one 
validated approach exists so far for bush bean pods that employed a 
combination of machine learning (RFC) and image processing [29]. We 

Fig. 4. Performance evaluation for the CV estimations of different seed arrangement properties. The results from the Faster R-CNN predictions were compared to 
visual scorings for seeds and abortion occurrences in a) and c) and for swan necks in b) and d). These results are further broken down for the yellow (a, b, n=60) and 
the green variety (c, d, n=57). Accuracy, precision, and recall metrics are highlighted in green. 

Fig. 5. Faster R-CNN predictions for seeds (blue rectangles), abortions (green rectangles), and swan necks (red rectangles). Values in the boxes indicate the con
fidence values. A) and b) display yellow bean pods, c) a darker green bean pod with bigger seeds, and d) a brighter green bean pod with smaller seeds 
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tested this approach on our data and found that it did not reliably pro
cess images of all bean varieties. We assume that the methods were 
developed using data with less variation in some of the traits. In the field 
of deep learning, convolutional neural networks (CNN) have been suc
cessfully used for peduncle detection of bell peppers in the field [45]. We 
replaced the machine learning RFC approach (introduced in [29]) with a 
CNN model and were thus able to improve the detection accuracy 
despite the larger variation in data. Detected beaks and peduncles were 
masked very precisely, which was also reflected by accurate length es
timations (Fig. 3a). In a few cases, the CNN missed peduncles mainly due 
to their size, i.e. no or barely any stem or petals were visible (Fig. 2c 
VII–IX), although it hardly affect the length estimation. In 4 pods, two 
beaks were detected. In these cases, a correct attribution could be made 
based on the confidence scores of the predictions. 

Caliber measurement via CV was robust for the Round and slightly limited 
for the Flat and Oval pod categories: We showed a comprehensive vali
dation of the caliber measurement method (Fig. 3b) reported in Jollet 
et al. (2021) [29]. Because we were able to improve the segmentation of 
bean pods, the caliber estimates are now more accurate, as reflected by a 
mean residual of 0.36mm (supplement 5). In case of 26 pods from the 
Oval and Flat category the caliber could not be measured accurately, 
because the pods showed their narrow side towards the camera. For 
automated estimations this could be overcome by comparing individual 
measurements to the median (as the mean is sensitive to outliers), as 
modern bean varieties used for breeding are quite uniform. The results 
of this study indicate that the main challenges arise from perspective 
issues. If the bean pod is strongly curved and flattened, the orientation 
towards the camera will determine the accuracy with which the cur
vature and caliber can be measured. This effect was perceived for the 
categories Oval and Flat, in particular. 

Curvature can be estimated objectively and the CV method works robustly 
within the range of breeder scorings: A new method for calculating the 
curvature of a bean pod based on local derivatives was presented for the 
first time. It also takes into account a heterogeneous distribution of 
curvatures along the pod up to special shapes like S-shapes. This study 
represents a significant improvement compared to previous curvature 
measures based on the ratio of the minimum and maximum width of the 
convex hull of the center line [27] or the ratio of curved to straight 
length [46]. A curvature estimation based on local derivations was also 

conducted by Soleimanipour & Chegini (2019), who successfully 
measured the curvatures of cucumber contours using B-spline regression 
models [47]. In contrast to their approach, it was sufficient to approx
imate a single curved line, which is why we used less complex poly
nomial fitting functions. The perspective issues mentioned above are 
also evident in Flat bean pods of scored class 4. Some samples were 
positioned in a way that resulted in more accurate caliber than curvature 
measurements. There was one case, where 4 pods of a Flat variety dis
played this peculiarity. Proper positioning of the bean pods, however 
will reduce this biasing effect. Furthermore, a relatively high MAPE was 
noticed for the curvature regression model. It should be noted that the 
MAPE metric is more sensitive to values close to 0, e.g. in the scoring 
classes 1-4. In addition, these deviations could also result from inac
curacies of the reference scoring. In our study, no twisted bean pods with 
a complex 3D curvature were present, as they are extremely rare and 
cannot be measured with a 2D imaging approach. 

Seed arrangement analysis via backlight imaging is a promising approach: 
To conclude on the number of seeds, abortions, and swan neck, breeders 
rely on haptic assessment. The surface of the pod is typically gauged 
with fingers to count seeds and find abortions and swan necks. As such, 
there is a lack of visual feedback, which in turn can be problematic with 
small seeds or a missing seed marking as is the case with most breeding- 
relevant varieties. In this work, an approach to assess the seed 
arrangement of bean pods via transmitted light was presented. Since the 
haptic evaluation of the seed arrangement by the expert breeder differed 
substantially from the visual inspection of the backlight images, the 
latter was used as a reference Good results were obtained for the 
translucent yellow variety, where hardware setup and camera settings 
allowed us to achieve a good contrast between seeds and the rest of the 
pod. This facilitates further detection by the Faster R-CNN, a neural 
network model proven to be very efficient in various agricultural 
[48–50] and non-agricultural [51,52] contexts. On well-developed pods, 
seeds, abortions and swan necks were reliably identified by the faster 
R-CNN (Fig. 5a, b). The limitations of the approach were tested using a 
green variety with variable but comparatively low transmission, small 
seeds and pods at different stages of development. The results show that 
the accuracy of the CV method is mainly influenced by seed size and 
bean pod transmittance as a consequence of variety properties and age 
(Fig. 5c, d) and by the contrast between seeds and the rest of the pod. 

Fig. 6. Relationship between reference scores for the green brightness and log-transformed computer vision estimations. The orange-colored stars denote bean pods 
from the categories Oval and Flat which showed their narrow side towards the camera, while the visual assessment considered the broad side (n= 309). 
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The latter depends on the well-tuned settings of backlight illuminance 
and exposure time in relation to the pod transparency ranging between 
dark and bright (Fig. 5). In a sample set of mixed pod transparencies, 
good settings for dark pods resulted in overexposed bright pods (Fig. 5c, 
d) and vice versa. Further improvements could be achieved with a larger 
and more balanced training data set (regarding the number of green and 
yellow samples), which was not available for this study. On the hard
ware side, improvements could be achieved by employing a camera with 
a higher dynamic range or by acquiring a series of images with different 
backlight illuminances in combination with a contrast analysis of the 
pods to find the optimal illumination settings for each individual bean 
pod. 

Bean color classification by hue thresholding and RF classification has 
proven to be an effective combination: A new method was presented not 
only to distinguish between green and yellow bean pods by hue 
thresholding, but also to identify rare bicolor pods, which are unwanted 
in breeding programs. Although limited data was available for this class, 
we were able to get sufficient results using an RFC model, which can 
help breeders identify yellow bean varieties that tend to produce bicolor 
pods. 

Brightness of green bean pods can objectively be assessed with the pre
sented CV system: With the CV approach, we were able to precisely 
measure the brightness of green bean pods. However, slight discrep
ancies between reference and CV measurements were observed for a few 
bean pods, which are featured by a different average brightness 
depending on which side is facing the camera. It is likely that in these 
cases, different pod sides were evaluated for reference and CV 
measurements. 

Applicative value of the system in breeding programs: New plants can be 
assessed directly in the field with standard descriptors (e.g. according to 
UOPV guidelines), which is sufficient in the early steps of a breeding 
program for doing a first and not very stringent selection. During later 
steps in the program, the presented imaging system can help to find 
superior plants within the higher generations by testing the pod char
acteristics of the respective bulks (progenies of single plants). As modern 
varieties continue to converge, breeders seek for methods to find 
slightest differences in pod appearance, and the presented system pro
vides a practical solution. Furthermore, the vegetable market sets spe
cific requirements for the shape and color characteristics of bean pods. 
Are these requirements not fulfilled, a successful market entry is pre
vented even for a high-yielding variety. After imaging a set of different 
varieties (one image per variety with up to 40 pods per image), the 
software takes the images from a folder and processes each image and 
each pod one after the other and returns a .CSV file with the estimations 
for all traits in tandem with labeled image data for analysis back tracing. 
As the variety name is tracked during the whole process, the data can 
later be synchronized easily with other traits recorded during 
vegetation. 

5. Conclusions 

Evaluating quality traits of bush bean pods manually is a time- 
consuming process that generates a significant bottleneck in breeding 
programs. Currently, quality trait evaluations, which combine manual 
measurements and visual scorings, must be performed by experts; 
however, the reliability of this process remains susceptible to inter-rater 
variability and day-to-day variability for a given rater. The hardware 
setup and computer vision workflow presented in this study allows large 
amounts of samples to be analyzed with consistent repeatability. Various 
categories of bush bean pods were assessed with a throughput of 
approximately 45 pods per minute (run with Geforce RTX 3070 graphics 
card). Therefore, the analysis software is much faster compared to the 
usual practice. The hardware setup could also be implemented in an 
assembly line for even higher throughput, helping to reduce the phe
notyping bottleneck in bean breeding programs. In contrast to the visual 
assessment of curvature and brightness, the continuous scales allow for 

more distinct estimations. Although only green and yellow bean vari
eties were covered in this study, the methods for hue and brightness 
analysis could also be applied to violet or colorful spotted bean pods. An 
additional opportunity for extending the methodology presented in this 
work is seed coat pattern analysis, which could be made available by 
adding specific methods to the analysis software. For example a RF 
approach similar to the one of this study could be used to classify 
different properties of seed coats. Furthermore, we consider the back
light imaging method as a promising approach, which needs to be 
further developed to better analyze the properties of the seed 
arrangement. 
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