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ABSTRACT: This work presents the development and implemen-
tation of a deep learning-based workflow for autonomous image
analysis in nanoscience. A versatile, agnostic, and configurable tool
was developed to generate instance-segmented imaging datasets of
nanoparticles. The synthetic generator tool employs domain
randomization to expand the image/mask pairs dataset for training
supervised deep learning models. The approach eliminates tedious
manual annotation and allows training of high-performance models
for microscopy image analysis based on convolutional neural
networks. We demonstrate how the expanded training set can
significantly improve the performance of the classification and
instance segmentation models for a variety of nanoparticle shapes,
ranging from spherical-, cubic-, to rod-shaped nanoparticles. Finally,
the trained models were deployed in a cloud-based analytics
platform for the autonomous particle analysis of microscopy images.
KEYWORDS: nanoscience, deep learning, convolutional neural networks, synthetic data, domain randomization, particle analysis

■ INTRODUCTION
The development of deep learning (DL) algorithms to
automate image processing and image analysis is one of the
most rapidly growing fields in computer vision (CV).1

Convolutional neural networks (ConvNets) are among the
state-of-the-art methodologies that outperform classical algo-
rithms in a wide variety of image recognition tasks, including
verification/identification, classification, object detection,
segmentation, image reconstruction, denoising, colorization,
or style transfer.2,3 ConvNets have also been applied to solve
various problems in materials research,4 such as high-
throughput classification of microscopy images of catalyst
materials and their particle size distribution analysis,5 detecting
defects in nanofibrous materials,6 and high-resolution synchro-
tron tomography by denoising reconstructed images of internal
material structures.7

Instead of performing several handcrafted preprocessing
steps, DL models�trained on representative datasets�can
learn to extract complex features directly from the raw
micrographs, enabling automation in the analysis. Further-
more, well-defined performance metrics validate the reliability
of such models, providing robust quantitative standards.
However, one of the major challenges for supervised model
training tasks is the availability of labeled data. This issue is
exacerbated in highly specialized domains, such as nano-

science, where the lack of annotated datasets hinders the
building of autonomous analytics tools.8

Electron microscopy (EM) is one of the most utilized
characterization techniques in nanoscience.9 Based on the
image analysis, nanoparticle (NP) images can be characterized
by a variety of parameters, including shape, size, or spatial
distribution. After collecting samples and imaging data,
researchers often perform particle measurements manually
using image analysis software such as Fiji.10 This approach,
however, is tedious and inefficient for high-throughput or real-
time analysis due to its slow, laborious, and highly specialized
manual procedure.

Semiautomated methods based on classical computer vision
algorithms were integrated into the image analysis software,
but they are often applicable for simple cases where particles
are well segregated or monodispersed. In these methods,
conventional procedures like Otsu’s binarization and Canny
edge detection were adopted for detecting the particle
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boundaries.11 Other techniques have also been developed
based on the template matching strategy, which assigns a score
to each probable particle location in the image.12,13 Such
methods, however, are not often applicable to analyze complex
cases with different particle shapes, distributions, or heteroge-
neous image backgrounds. Furthermore, two-dimensional
(2D) mapping complicates semiautomated thresholding
techniques for segmenting overlapping and crowded particle
systems.

The application of DL algorithms for the analysis of EM data
has been thoroughly reviewed in a recent article.14 For
example, the U-Net architecture15 with StarDist formulation
for loss function16 were trained to automate the particle size
distribution analysis of electrocatalyst materials, where various
shape, texture, and patterns are generated between the
overlapping catalyst NPs and the support material.17 DL
models were also used for real-time segmentation of NPs in
liquid phase EM movies to statistically examine the diffusion,
reactivity, and assembly kinetics of cube-, prism-, and rod-
shaped colloidal NPs.18 Another example is the Image-
DataExtractor software which uses Bayesian DL to segment
and quantify NPs of different morphologies.19

Supervised DL algorithms for image classification and
segmentation require a large amount of annotated and high-
quality data for training. While the manual annotation of the
regions of interest (ROIs) in the image is time-consuming,
various approaches were reported for the synthetic dataset
generation (Figure 1). For DL-based image synthesis,

generative adversarial networks (GANs) are prevalent.20

Notably, Zhang et al. developed the DatasetGAN,21 which
generates semantic segmentation masks in addition to
synthetic images. The training of GANs is, however,
computationally expensive, and they also require large datasets.
Other reported techniques are based on data augmentation
methods like domain randomization (DR). Applying DR on

2D images is based on cropping of ROI from the original
image and randomly pasting them on a similar background
after applying geometrical transformations like flipping,
rotating, or resizing. Simultaneously, segmentation masks can
be created. These simple procedures can provide effective
datasets for training DL models and are also adaptable to
various systems.

Even though the synthetic images using DR look less
realistic than those generated with GANs, there have been
several reports of the effective use of such methods for training
the DL models. For example, the “Cut, Paste, and Learn”
method was proposed by Dwibedi et al.22 for object detection.
Toda et al.23 applied DR for segmented dataset generation of
seeds; here, a pool of different seeds was created from real
images and were pasted randomly on a similar background,
while the segmentation masks of seeds are also created. Kharin
generated 3D shapes of nanoparticles from extracted textures
of real EM data,24 with the particles positioned onto a 3D
environment and backgrounds extracted from the micrographs.
The obtained annotated dataset was employed to train a model
for particle detection.

Likewise, Polyanichenko et al.25 generated synthetic data
based on 3D models of metal−organic frameworks and trained
a model to detect and analyze such structures in real time. Due
to the extreme complexity and diversity of nanoparticle
systems in terms of shape, size and spatial distribution, various
textures, or occlusions, it is essential to develop a versatile,
system-agnostic, and configurable program that can generate
high-quality annotated datasets for DL model training.

In this paper, we first demonstrate a DR-based tool for
generating synthetic images of nanoparticle systems with
varying shapes along with their instance segmentation masks.
The input can be as small as a single image/mask pair, from
which the program extracts the background and ROI regions
and applies various transformations to generate diverse and
customized datasets for DL model training. The generated
dataset was used for supervised learning tasks including
nanoparticle classification and nanoparticle segmentation.
Next, CV-based tools were developed to extract the size of
the NPs and to generate particle size distribution plots. The
trained models were further deployed into our cloud-based
platform, Virtual Minds (ViMi) Labs,26 which offers an
interface for high-throughput image analysis for functional
energy materials.

■ METHODS
Figure 2 demonstrates the general workflow for the automated
nanoparticle analysis by utilizing our DL-based approach. It involves
synthetic image generation to expand the annotated training datasets,
supervised learning for image classification and particle segmentation,
automated size measurement on predicted ROI, and statistics and
visualization of results, followed by model deployment into the
imaging platform.

As input to generate the synthetic images, we used the open access
Electron Microscopy Particle Segmentation (EMPS) dataset.27 It
consists of 465 micrographs and their corresponding manually
annotated labels for segmentation model training. The dataset
contains diverse particle shapes, sizes, textures, and distributions.
To apply the methodical workflow in Figure 2 to various particle
systems, we inspected the EMPS dataset based on the shape of the
particles and collected the images in 3 different classes, namely, the
spherical NPs, nanocubes, and nanorods.

Figure 1. Dataset preparation for supervised model training tasks.
Time-consuming, manually performed single-particle annotation in
(a) is compared with automated synthetic dataset generation with
expanded datasets and instance segmentation masks in (b).27
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Synthetic Image Generator

As shown in Figure 3a, our algorithm takes the EM image and its

segmentation mask as the input, automatically extracts the ROIs and

background, and saves them into their pools. Thereafter, the software

applies customized random transformations to locate the ROIs on the

background; simultaneously, it generates the corresponding masks for
the synthetic image through the same transformations.

For the first step, ImageJ API and the PymageJ library were used to
locate the position of ROI from the annotated mask and to crop the
ROI into individual image files for creating the particle image pool.23

Chopped ROI due to overlapping 2D view or when located at the
boundaries of the real image affects the quality of synthetic data, and

Figure 2. Methodical pipeline for deep learning-based analysis of nanoparticles. The pipeline consists of five main steps. (1) Synthetic dataset
generation: a small number of annotated images are utilized to generate a synthetic dataset with the UTILE-Gen tool. (2) Shape classification: a
classification model is trained to identify the shape of nanoparticles in images. (3) Instance segmentation model training: instance segmentation
models are trained using the synthetic dataset. (4) Particle size and shape extraction and statistics: the predicted masks from the segmentation
models are used to extract the size and analyze the shape of individual particles based thereon a statistical analysis is performed. (5) Web app
deployment: the pipeline is deployed as a web application, offering access to users for nanoparticle analyses.27

Figure 3. (a) Schematic pipeline for synthesizing images based on image/mask pairs. (b) Examples of real images from the EMPS dataset in three
different classes of nanoparticles,27 along with the generated synthetic image using the tool developed in this work.
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therefore, they need to be removed from the ROI pool. To address
the former issue, the size of individual ROI was quantified in pixels
and a tunable parameter was set in the program to eliminate all
particles below a certain size. Here, the particles with less than 60% of
the average size of ROIs were removed from the pool to remove the
truncated overlapping particles. As shown in Figure 4a, in order to
filter the chopped particles at the boundaries from the pool, the pixel
values from the border were inspected and the ROI with values
detected at the boundaries of the image was removed from the mask.
This process could prevent the extraction of chopped boundary
particles.

To generate the background canvas, as shown in Figure 4b, two
different methods were implemented in the software to address the
cases with homogeneous and inhomogeneous background textures.
The first one employs the inPaint() function from the OpenCV
library where the annotated objects in the mask can be removed from
the real image and substituted by a neutral hue based on the
surrounding pixels of the object. The result generates an empty canvas
and keeps the features of the original image such as the background
inhomogeneities, or the scale bar. The second method identifies the
background from the real mask and computes the average background
pixel’s intensities from the corresponding real image. The mean
intensity can then be used to create a canvas for the synthetic images.
The latter is more suitable for systems with homogeneous
backgrounds.

Next, a series of hyperparameters were specified to customize the
synthetic images including options for creating the overlapping vs
nonoverlapping ROIs (Figure 4c) or specifying the number of
particles in the image (Figure 4d). To generate the image/mask pairs,
first, a background is randomly taken from the background pool along
with a black frame for the mask. Next, a particle is randomly picked
from the particle pool, rotated, and rescaled within a specified range
to introduce variations. Then, the particle is pasted onto the
background, and a particle filled with a unique color is placed into
the mask canvas in the same location. For overlapping systems, the
ROIs are randomly pasted into the canvas, while for nonoverlapping
instances, the canvas is divided into a grid based on the number of
particles and populated afterward to avoid overlapping. This process
can be repeated until the required particle count per image is
obtained. Next, salt and pepper noise and Gaussian blur filter are
added for smoothing and enhancing the realism of the images. Finally,
the image/mask pairs are converted to TIFF files and saved in a folder
structure for deep learning model training. The output size of the
generated images and masks is set by default to 1024 × 1024 pixels.

Table 1 summarizes the hyperparameters in the program to
generate the customized dataset. To prepare the dataset for supervised

learning tasks in this work, the number of particles per image was
selected as almost the same number as in the original image to avoid
over- and undercrowded images. Salt and pepper noise and Gaussian
blur were set to 0.1 and 0.3, respectively, and the range scaling factor
was set at 0.3 and 2 for the lower and upper limits, respectively.
Supervised Model Training
The synthetic data was used to train ConvNet-based image
classification and instance segmentation models. In the typical
classification architectures, an image is provided as input and the
probability distribution over the different predefined classes is
predicted as output. The image is a 3D tensor (column × row ×
channel) and the ConvNet applies a set of convolutions defined via
learnable kernels (filters or feature detectors) by sliding over spatial
locations of the image to generate the transformed representations or
activation maps. The activation maps have smaller spatial dimensions
and larger depth in the channel dimension. Each generated activation
map channel learns to respond to certain visual features of the
image�from low- to high-level features as it goes deeper into the
convolutional layers.

The convolution operations are typically followed by applying
activation functions and pooling operations. Activations functions

Figure 4. Schematic of synthetic image generator tool capabilities. (a) Edge particle removal: artifact reduction by removing edge particles. (b)
Inhomogeneous background extraction and synthesis: extraction or creation of new inhomogeneous backgrounds. (c) Synthetic particle
arrangements: representation of different arrangements for synthetic particles. (d) Custom crowding selection: feature for selecting the level of
crowding in synthetic images.

Table 1. Description of the Input Parameters for the
Creation of Customized Datasets with the Synthetic Dataset
Generator Tool

hyperparameter input description

dataset size integer number of generated synthetic
image/mask pairs

particles per image integer range random number inside the range of
objects per image

overlapping
particles

boolean if true, the objects are pasted randomly
in a grid with minimal overlap

synthetic
backgrounds

boolean if true, the mean background intensity
is extracted, and a synthetic
background is added to the pool

salt-pepper noise upper-limit
float

random SP-noise between 0 and the
given limit is applied to every image

gaussian blur upper-limit
float

random GB between 0 and the given
limit is applied to every image
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such as Rectified Linear Units (ReLU) introduce nonlinearities into
the layer-wise signal transformation. After an image is passed through
a series of convolutional layers and the fully connected layer, the
classifier can be applied to the 1D feature vector to generate the
probability distribution over each class and the one with the highest
probability is mapped as the class label for the image. During the
model training, the gradient of the loss function is computed for each
weight in the convolutional kernels using backpropagation, and the
weights are updated to minimize the loss function.

To classify the images into different nanoparticle systems, we used
transfer learning and fine-tuned a pretrained model on our synthetic
dataset. A pretrained model can be initially trained on a large generic
natural image dataset and then be used to extract useful generic
features from the image. In our work, we employed the Xception28

model pretrained on the ImageNet dataset.29 For classification, the
synthetic dataset of nanoparticles was generated using 179 real images
in the three different classes�spherical-, cubic-, and rod-shaped. The
dataset was split into two sets for training, including 126 images from
which 750 images were created synthetically, and 53 images for
validation.

For the instance segmentation task, the U-Net architecture with
StarDist loss function was chosen (Figure 5).15−17 Standard
architectures, for instance segmentation, involve fully convolutional
networks, which first perform convolution and down-sampling
operations to extract the features (encoder), followed by up-sampling
and transpose convolution operations (decoder) until the starting
input size is reached. The U-Net model, in addition to the described
data flow, concatenates the up-sampled decoder features with the
corresponding ones from the encoder (Figure 5b). The concatenation
of the encoder and decoder feature maps across all resolution levels
enables an improved recognition of object boundaries and edges,
leading to an increased performance and more accurate output
segmentation maps. The StarDist add-on to the loss function of the
U-Net backbone overcomes the typical issues for the dense prediction
of merged bordering particles. In StarDist, each pixel from the
detected ROI is parameterized by two values, radial distances, and
object probabilities (Figure 5a). For the radial distance, a star-convex
polygon is fitted from the pixel position to the edges of the particle
and the object probability value is calculated from the shortest
distance of the pixel to the edge of the particle. Non-maximum
suppression (NMS) technique is then applied to eliminate the

overlapping detections with lower object probabilities leading to
segmentation of individual overlapping instances.

Standard augmentation techniques30 were employed to expand the
training set through basic image manipulations such as cropping
images into patches and augmenting by rotation, varying intensity, or
applying Gaussian blur. The instance segmentation models were
trained using the default hyperparameter in the StarDist implementa-
tion of U-Net with the number of epochs and steps per epoch set as
200 and 100, respectively. The performance of the trained model was
analyzed using the Intersection over Union (IoU) threshold. The IoU
measures the number of pixels common between the manual
annotated masks, the so-called ground truth, and prediction masks,
obtained by the model, divided by the total number of existing pixels
in both masks. A true-positive (TP) represents the case if a
prediction−target mask pair for nanoparticles has an IoU score that
exceeds 0.5; a true-negative (TN) is that for background. On the
other hand, a false-positive (FP) indicates a predicted NP mask with
no associated ground truth mask, and a false-negative (FN) indicates
a ground truth NP mask with no associated predicted mask. This way,
the metrics of accuracy, precision, recall, and F1 score are defined as

=
+

Precision TP
TP FP

=
+

Recall TP
TP FN

= × × +F Precision Recall Precision Recall1 2 /( )

Given the segmentation maps obtained from the model, each ROI
was cropped into an individual image. Next, we employed the
OpenCV library to draw a bounding box around the particles and
measured the pixels along with the X and Y directions. Real distances
can then be calculated from the pixel values with image calibration.
Finally, the obtained sizes for the X and Y axis were used to generate
the histograms for the particle size analysis and other statistics such as
perimeter, area, solidity, roundness, extent, and aspect ratios.

■ RESULTS AND DISCUSSION
For classifying nanoparticles, the comprehensive process of
fine-tuning and assessing the pretrained model after dividing

Figure 5. (a) Sample EM image depicting overlapping particles. The StarDist model16 captures star-convex polygons for each particle via radial
distances (ri,j) and object probabilities (di,j) for the pixel i,j. (b) The U-Net architecture.15,16
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the data involves selecting the network architecture, initializing
the weights from a pretrained model to improve the
performance, and selecting the optimal learning rate to
determine how large are the steps toward the optimal
minimum and regularization strength. These process steps
are required to minimize the loss function, which computes
how large the error between the manual annotated mask and
the predicted mask by the model is. Afterward, we evaluate the
model using the validation set. Figure 6a shows the learning
curves (validation loss vs epoch number) of the pretrained
Xception model fine-tuned on our dataset. The training and
validation loss curves displayed no signs of overfitting/
underfitting during the model training, On the validation set,
the model achieved an accuracy of 91%. Figure 6b shows the
normalized confusion matrix for the classifier on the test set,
which was not used as input for the synthetic dataset generator.
The x-axis shows the predicted labels, and the y-axis shows the
true labels. The classification accuracy of ∼90% can also be
seen in the confusion matrix.

In this study, we compared state-of-the-art models and
augmentation techniques by assessing the impact of synthetic
data on the prediction performance of models in cases with
limited data. The Xception model and the ConvNeXtBase
model,31 a state-of-the-art deep learning architecture, were
trained on two datasets: one consisting of 15 real images per
class and mixed dataset consisting of 15 real images per class
and 5 synthetic images per real image. Furthermore, we
evaluated the use of advanced augmentation techniques, such
as RandAugment and MixUp,32,33 to determine their effects on
model performance in comparison to the base models.

Table 2 compares the classification accuracies from the
models trained on real images, as well as mixed real and
synthetic images using various augmentation techniques. The
Xception model demonstrated improved accuracy from 30 to
64% when advanced augmentation methods were applied on
real images,32,33 while the best performance was achieved by
combining synthetic and real images from 68 to 75%. On the
other hand, the classification accuracy of more advanced
architectures like ConvNeXtBase network showed a slight
decrease in performance when subjected to the use of synthetic
data, saturating at 85%, while the employment of state-of-the-

art augmentations could slightly increase the performance to
89% on our dataset.

For the instance segmentation task, the images in each class
were split into approximately 80% for the training set and 20%
for the validation set. Next, using the synthetic image generator
tool, the training set was expanded by 500%. Afterward, the U-
Net model was trained on the real images as well as the
expanded training set. Table 3 summarizes the performance of

the model for the two cases by calculating the metrics for
precision, recall, and F1 score. For all particle categories, up to
13% improvements in the performance metrics were obtained
using synthetic data. Figure 7 demonstrates a few examples of
the segmentation results on the test set, for the model trained
on the expanded dataset, and for the three different particle
categories.

To further analyze the utility of the synthetic image
generator tool, further experimentations were conducted by
starting from the worst-case scenario where only one
annotated image is available. Even though in this extreme
case, training a DL model is not relevant, by generating
synthetic data, we can enable automation in the image analysis.

Figure 6. (a) Learning curves for fine-tuning the pretrained Xception model for the classification of nanoparticles into three classes: cubic-,
spherical-, and rod-shaped particles. (b) Normalized confusion matrix on the test set.

Table 2. Comparison of Model Accuracy Using Real Data,
Mixed Real and Synthetic Data, and Various Augmentation
Techniques for the Xception and ConvNeXtBase Networks

model accuracy [%]

model
standard augmentation

real/Mix
MixUp + RandAug

Real/Mix

Xception 30/68 64/75
ConvNeXtBase 87/87 89/85

Table 3. Performance Comparison of Segmentation Model
Trained on Only Real Data versus the Mixture of Real and
Synthetic Data

dataset
precision [%]

real/mix
recall [%]
real/mix

F1 [%]
real/mix

nanocubes 89/90 72/78 79/84
nanoparticles 81/94 85/92 84/93
nanorods 86/92 87/93 87/93
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To test this, one image was randomly selected starting from
three different cases of black NPs, gray NPs, and ordered
nanorods, and a synthetic dataset of each image was generated
consisting of 50 synthetic image/mask pairs. Afterward, for
each class, a model was trained on synthetic data. The
remaining images in each class were used for validation of the
results. As summarized in Table 4, acceptable performances

were obtained for the models only trained on the synthetic
data in a most difficult scenario where only one annotated real
image/mask pair is available. This utility of the tool means that
with just a minimal manual annotation effort, we can obtain an
acceptable performance of the DL model for the segmentation
of various nanoparticle systems.

We further evaluated the performance improvements by
varying the number of real image/mask pairs as input for the
synthetic image generator. For this test, the largest class dataset
was employed, which consists of 93 images of spherical NPs,
which were split into 30 images for training and 63 images for
validation. From the 30 real image/mask pairs for training, four
datasets consisting of 5, 10, 20, and 30 images were created on
which the synthetic image generator tool was applied to
expand the training set by 500%. Table 5 shows the F1 score
obtained from this experimentation. Consistently, by increas-
ing the number of real images, the F1 score increases from 36%
for 5 images as the training set to 88% for 30 real images.

Expanding the training set by generating 5 synthetic images per
real image, the F1 score is significantly improved from 36% for
5 real images to 74% on the corresponding expanded training
set. Likewise, the F1 score was improved from 63, 77, and 88%
when the model is trained on 10, 20, and 30 real image/mask
pairs to 86, 88, and 92% on the expanded dataset, respectively.

Following the overall workflow to automate the analysis as
shown in Figure 2, particle sizes, areas, aspect ratios, solidities,
orientations, extents, perimeters, and roundness can be
extracted in step 4 with a separately developed CV tool.

The area of the region of interest (ROI) is quantified by the
count of nonzero pixels, representing the occupied space by
the ROI. The equivalent diameter is calculated based on the
area, representing the diameter of a circle with the same area as
the ROI.

The aspect ratio of the ROI is determined as the ratio of the
width to the height of the individual object of interest,
providing an understanding of the shape of the ROI. Solidity
measures the compactness of the ROI, determined by the ratio
of the ROI’s contour area to the convex hull area. The convex
hull refers to the smallest convex polygon that can completely
enclose the contour. Orientation describes the angle at which
the ROI is tilted. It is determined by fitting an ellipse to the
contour and reporting the angle of this fitted ellipse. Extent
quantifies the ratio of the contour area of the ROI to its
bounding rectangle area, indicating how much of the bounding
rectangle the ROI occupies. The perimeter is calculated as the
arc length of the contour of the ROI, signifying the length of its
boundary. Roundness, or circularity, is a measure of how
closely the shape of the ROI resembles a perfect circle. It is
computed as the ratio of 4π times the area to the square of the
perimeter.

From this result, the particle size histograms can be
generated using typical visualization tools with appropriate
binning size and fitting function, as exemplified in Figure 8.

The developed DL-based workflow described in this paper
was partly deployed into the Virtual Minds Labs (ViMi Labs,
vimi.ai). As shown in Figure 9, the imaging module of ViMi
labs currently allows the users to upload bulk EM images of
electrocatalyst materials and obtain the particle size distribu-
tion (PSD) and other distributions plots in a noticeably short
amount of time (∼10 s processing for each image), while the
manual or semiautomated PSD analysis can take up to several
hours depending on the number of particles per image. To fit
the obtained histogram, the kernel density estimation method
and log-normal distribution were tested, giving the kernel

Figure 7. Prediction of segmentation model on test images for various nanoparticle classes: (a) nanocubes, (b) spherical nanoparticles, and (c)
nanorods.27

Table 4. Instance Segmentation Performance Metrics of
Three Use-Cases for Models Trained on 50 Synthetic
Images Generated from One Real Image

dataset
precision

[%] recall [%] F1 [%] validation set size

gray NPs 88 63 73 39
black NPs 91 93 92 62
ordered nanorods 80 75 77 8

Table 5. F1 Score Comparison of Segmentation Models
Trained on Different Numbers of Input Real Image/Mask
and of the Expanded Synthetic Dataset

F1- score [%]
5 real
images

10 real
images

20 real
images

30 real
images

0 synth images per real
image

36 63 77 88

5 synth images per real
image

74 86 88 92
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density estimation method a superior fit. However, the user of
the code will have the option to choose among fitting methods
and obtain the best estimate of the underlying probability
distribution. The platform provides a visual representation of
the results, including the uploaded image, individual measure-
ments of the objects of interest, particle analysis, and mask of
the model for prediction verification. Results can also be
downloaded as a .csv file.

■ CONCLUSIONS
This work presented a multistep DL-based methodical
workflow to automate microscopy image analysis in nano-
science. It involves generating synthetic annotated imaging
data for nanoparticles with varying shapes using domain
randomization. Afterward, we trained DL models on the
augmented data for classification and instance segmentation,
followed by computer vision-based automated measurement of
particles, and finally deployment of the model into our cloud-
based web application (vimi.ai).

Our synthetic image generator tool is customizable and
nanoparticle shape agnostic, which outputs image/mask pairs
for image segmentation model training tasks. The software can
create a large amount of data employing domain random-
ization and provides several hyperparameters such as noise,
blurring, scaling factor, and number or distribution of the
particles which enables the application for various use-cases of
interest. The data augmentation enabled by the synthetic
image generator tool was extensively evaluated by comparing
the performances of various trained deep learning models.
Accurate particle classification and segmentation can pave the
way for the accelerated characterization of nanomaterials.
Future work should focus on developing real-time image
analysis tools and deployment into web, mobile, or desktop
applications.

■ ASSOCIATED CONTENT
Data Availability Statement

The software for the synthetic image generator tool is available
at https://github.com/andyco98/UTILE-Gen.

Figure 8. Automating particle size distribution analysis using the deep learning-based workflow based on instance segmentation and measurements
of nanoparticles in EM micrographs.27

Figure 9. Example of the utilization of the trained models for particle size distribution analysis deployed in the ViMi labs platform.26
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Michael H. Eikerling − Theory and Computation of Energy
Materials (IEK-13), Institute of Energy and Climate
Research, Forschungszentrum Jülich GmbH, 52425 Jülich,
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