001014722 001__ 1014722
001014722 005__ 20240226075458.0
001014722 0247_ $$2doi$$a10.1103/PhysRevResearch.5.033200
001014722 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03412
001014722 0247_ $$2WOS$$aWOS:001123024300001
001014722 037__ $$aFZJ-2023-03412
001014722 082__ $$a530
001014722 1001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b0$$eCorresponding author$$ufzj
001014722 245__ $$aElectron spin secluded inside a bottom-up assembled standing metal-molecule nanostructure
001014722 260__ $$aCollege Park, MD$$bAPS$$c2023
001014722 3367_ $$2DRIVER$$aarticle
001014722 3367_ $$2DataCite$$aOutput Types/Journal article
001014722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704896008_20488
001014722 3367_ $$2BibTeX$$aARTICLE
001014722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014722 3367_ $$00$$2EndNote$$aJournal Article
001014722 520__ $$aArtificial nanostructures, fabricated by placing atoms or molecules as building blocks in well-defined positions, are a powerful platform in which quantum effects can be studied and exploited. In particular, they offer the opportunity to reduce the electronic interaction between large aromatic molecules and the underlying metallic substrate, if the manipulation capabilities of scanning tunneling microscopy to lift the molecule into an upright geometry on a pedestal of two metal atoms are used. Here, we report a strategy to study this interaction by investigating the Kondo effect. Measurements at millikelvin temperatures and in magnetic fields reveal that this bottom-up assembled standing metal-molecule nanostructure has an S=1/2 spin which is screened by substrate electrons, resulting in a Kondo temperature of only 291±13 mK. We extract its Landé g factor and its exchange coupling Jρ to the substrate, using a third-order perturbation theory in the weak-coupling and high-field regimes. We also show that the interaction between the scanning tunneling microscope tip and the molecule can tune the exchange coupling.
001014722 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001014722 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014722 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b1
001014722 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b2
001014722 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b3
001014722 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.5.033200$$gVol. 5, no. 3, p. 033200$$n3$$p033200$$tPhysical review research$$v5$$x2643-1564$$y2023
001014722 8564_ $$uhttps://juser.fz-juelich.de/record/1014722/files/Invoice_INV_23_SEP_011797.pdf
001014722 8564_ $$uhttps://juser.fz-juelich.de/record/1014722/files/PhysRevResearch.5.033200.pdf$$yOpenAccess
001014722 8564_ $$uhttps://juser.fz-juelich.de/record/1014722/files/PhysRevResearch.5.033200.gif?subformat=icon$$xicon$$yOpenAccess
001014722 8564_ $$uhttps://juser.fz-juelich.de/record/1014722/files/PhysRevResearch.5.033200.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001014722 8564_ $$uhttps://juser.fz-juelich.de/record/1014722/files/PhysRevResearch.5.033200.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001014722 8564_ $$uhttps://juser.fz-juelich.de/record/1014722/files/PhysRevResearch.5.033200.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001014722 8767_ $$8INV/23/SEP/011797$$92023-09-07$$a1200196406$$d2023-09-11$$eAPC$$jZahlung erfolgt
001014722 909CO $$ooai:juser.fz-juelich.de:1014722$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001014722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b0$$kFZJ
001014722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b1$$kFZJ
001014722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b2$$kFZJ
001014722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
001014722 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001014722 9141_ $$y2023
001014722 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001014722 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001014722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001014722 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014722 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
001014722 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
001014722 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
001014722 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001014722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001014722 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001014722 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014722 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
001014722 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001014722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
001014722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001014722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001014722 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001014722 980__ $$ajournal
001014722 980__ $$aVDB
001014722 980__ $$aUNRESTRICTED
001014722 980__ $$aI:(DE-Juel1)PGI-3-20110106
001014722 980__ $$aAPC
001014722 9801_ $$aAPC
001014722 9801_ $$aFullTexts