001014734 001__ 1014734
001014734 005__ 20240712113154.0
001014734 0247_ $$2doi$$a10.1038/s41598-023-40637-0
001014734 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03424
001014734 0247_ $$2pmid$$a37644035
001014734 0247_ $$2WOS$$aWOS:001119561800048
001014734 037__ $$aFZJ-2023-03424
001014734 082__ $$a600
001014734 1001_ $$0P:(DE-Juel1)180116$$aOlbrich, Wolfgang$$b0$$eCorresponding author
001014734 245__ $$aStructure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis
001014734 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2023
001014734 3367_ $$2DRIVER$$aarticle
001014734 3367_ $$2DataCite$$aOutput Types/Journal article
001014734 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701092022_29708
001014734 3367_ $$2BibTeX$$aARTICLE
001014734 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014734 3367_ $$00$$2EndNote$$aJournal Article
001014734 520__ $$aEfforts in design and optimization of catalyst layers for polymer electrolyte fuel cells hinge on mathematical models that link electrode composition and microstructure with effective physico-chemical properties. A pivotal property of these layers and the focus of this work is the proton conductivity, which is largely determined by the morphology of the ionomer. However, available relations between catalyst layer composition and proton conductivity are often adopted from general theories for random heterogeneous media and ignore specific features of the microstructure, e.g., agglomerates, film-like structures, or the hierarchical porous network. To establish a comprehensive understanding of the peculiar structure-property relations, we generated synthetic volumetric images of the catalyst layer microstructure. In a mesoscopic volume element, we modeled the electrolyte phase and calculated the proton conductivity using numerical tools. Varying the ionomer morphology in terms of ionomer film coverage and thickness revealed two limiting cases: the ionomer can either form a thin film with high coverage on the catalyst agglomerates; or the ionomer exists as voluminous chunks that connect across the inter-agglomerate space. Both cases were modeled analytically, adapting relations from percolation theory. Based on the simulated data, a novel relation is proposed, which links the catalyst layer microstructure to the proton conductivity over a wide range of morphologies. The presented analytical approach is a versatile tool for the interpretation of experimental trends and it provides valuable guidance for catalyst layer design. The proposed model was used to analyze the formation of the catalyst layer microstructure during the ink stage. A parameter study of the initial ionomer film thickness and the ionomer dispersion parameter revealed that the ionomer morphology should be tweaked towards well-defined films with high coverage of catalyst agglomerates. These implications match current efforts in the experimental literature and they may thus provide direction in electrode materials research for polymer electrolyte fuel cells.
001014734 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001014734 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014734 7001_ $$0P:(DE-Juel1)178966$$aKadyk, T.$$b1
001014734 7001_ $$0P:(DE-HGF)0$$aSauter, U.$$b2
001014734 7001_ $$0P:(DE-Juel1)178034$$aEikerling, M.$$b3
001014734 7001_ $$0P:(DE-HGF)0$$aGostick, J.$$b4
001014734 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-023-40637-0$$gVol. 13, no. 1, p. 14127$$n1$$p14127$$tScientific reports$$v13$$x2045-2322$$y2023
001014734 8564_ $$uhttps://juser.fz-juelich.de/record/1014734/files/s41598-023-40637-0.pdf$$yOpenAccess
001014734 8767_ $$8SN-2023-00743-b$$92023-11-23$$d2023-11-27$$eAPC$$jZahlung erfolgt
001014734 909CO $$ooai:juser.fz-juelich.de:1014734$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001014734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180116$$aForschungszentrum Jülich$$b0$$kFZJ
001014734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178966$$aForschungszentrum Jülich$$b1$$kFZJ
001014734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b3$$kFZJ
001014734 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001014734 9141_ $$y2023
001014734 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001014734 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001014734 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001014734 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-30
001014734 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001014734 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001014734 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014734 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001014734 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014734 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:11:06Z
001014734 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:11:06Z
001014734 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:11:06Z
001014734 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001014734 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001014734 920__ $$lyes
001014734 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001014734 9801_ $$aAPC
001014734 9801_ $$aFullTexts
001014734 980__ $$ajournal
001014734 980__ $$aVDB
001014734 980__ $$aI:(DE-Juel1)IEK-13-20190226
001014734 980__ $$aAPC
001014734 980__ $$aUNRESTRICTED
001014734 981__ $$aI:(DE-Juel1)IET-3-20190226