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Structure and conductivity 
of ionomer in PEM fuel cell catalyst 
layers: a model‑based analysis
W. Olbrich  1,2,3*, T. Kadyk 1,4, U. Sauter 2, M. Eikerling  1,3,4 & J. Gostick 5

Efforts in design and optimization of catalyst layers for polymer electrolyte fuel cells hinge on 
mathematical models that link electrode composition and microstructure with effective physico-
chemical properties. A pivotal property of these layers and the focus of this work is the proton 
conductivity, which is largely determined by the morphology of the ionomer. However, available 
relations between catalyst layer composition and proton conductivity are often adopted from general 
theories for random heterogeneous media and ignore specific features of the microstructure, e.g., 
agglomerates, film-like structures, or the hierarchical porous network. To establish a comprehensive 
understanding of the peculiar structure-property relations, we generated synthetic volumetric 
images of the catalyst layer microstructure. In a mesoscopic volume element, we modeled the 
electrolyte phase and calculated the proton conductivity using numerical tools. Varying the ionomer 
morphology in terms of ionomer film coverage and thickness revealed two limiting cases: the ionomer 
can either form a thin film with high coverage on the catalyst agglomerates; or the ionomer exists 
as voluminous chunks that connect across the inter-agglomerate space. Both cases were modeled 
analytically, adapting relations from percolation theory. Based on the simulated data, a novel relation 
is proposed, which links the catalyst layer microstructure to the proton conductivity over a wide 
range of morphologies. The presented analytical approach is a versatile tool for the interpretation 
of experimental trends and it provides valuable guidance for catalyst layer design. The proposed 
model was used to analyze the formation of the catalyst layer microstructure during the ink stage. A 
parameter study of the initial ionomer film thickness and the ionomer dispersion parameter revealed 
that the ionomer morphology should be tweaked towards well-defined films with high coverage of 
catalyst agglomerates. These implications match current efforts in the experimental literature and 
they may thus provide direction in electrode materials research for polymer electrolyte fuel cells.

Polymer electrolyte fuel cells (PEFCs) will be a key technology of a future sustainable energy ecosystem. At the 
brink of commercialization, further advances in performance and durability are needed1. A major proportion of 
irreversible performance losses originate in transport processes in the gas diffusion electrodes. This applies to all 
species involved in the overall fuel conversion, namely oxygen, hydrogen, protons, and electrons as well as water 
in liquid and vapor state. In earlier stages of fuel cell development, proton conductivity was not as critical as it is 
in today’s high-performing cells. The introduction of perfluorosulfonic acid (PFSA) polymers, such as Nafion, 
as highly charged electrolytes in the late 1980s2,3, alleviated the problem of proton supply in the cathode catalyst 
layer (CCL). However, during the last two decades large improvements of water management, oxygen supply and 
membrane resistance finally cleared the path to higher current densities and higher specific power output. With 
this progress, the proton conductivity in the catalyst layer emerged again as a crucial performance bottleneck4.

The ionomer content in the catalyst layer is a key optimization parameter: on the one hand, increasing the 
ionomer content increases the proton conductivity; on the other hand, excessive amounts of ionomer will 
block the pore space and thus impair gas transport5. Finding the optimal ionomer content has thus been the 
subject of several modelling studies6–10 and experimental efforts11–13. An optimal ionomer volume fraction of 
≈ 30...40% has been reported in the literature7,8,10, 12–14, though the exact value can vary significantly, with a range 
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from 13 to 40% found in commercially available catalyst layers14,15. These differences might have their origin in 
the varying microstructure of the CCL16. The optimal ionomer content also depends on operation conditions, 
catalyst layer thickness and Pt loading13. The ionomer content (in relation to Pt/C content) controls the interplay 
of transport (oxygen, water, and protons) and reaction, and thus can be tuned to optimize this interplay6,10. How-
ever, the relation between CCL microstructure and proton conductivity is not yet fully understood. Therefore, 
this work puts a primary focus on ionomer coverage and film thickness in the agglomerated CCL microstructure, 
which seem to be key parameters shaping proton conductivity. Molecular level structural features matter in this 
context, as water layer formation and structural ordering could both enhance or impair the proton mobility17,18

In conventional CCLs, Pt/C catalyst particles aggregate and are partially covered by a thin ionomer film with 
≈ 5...15 nm thickness19,20. Closer examination of this agglomerate structure and of the ionomer morphology 
revealed that typically the ionomer film is unevenly distributed21–24, i.e., its coverage and thickness can vary sig-
nificantly. Additionally, large ionomer aggregates that are not part of the thin film have been observed24–26. These 
variations in ionomer morphology largely impact the percolation behavior of the ionomer network and thus the 
proton conductivity of the CCL, as well as the volume fraction and network properties of gas-filled pores needed 
for oxygen supply27–29. The ionomer morphology in the CCL is not only determined by the composition of the 
ink, but also by Pt loading, type of carbon support, type of ionomer, ink solvent and processing parameters like 
processing times and thermal treatments16,30,31.

The understanding of how the ionomer morphology can be tuned and which structures yield an optimal 
performance remains a subject of ongoing experimental efforts24,32–35. At present, fuel cell developers have to 
optimize the CCL composition and fabrication process individually for every material combination and fuel cell 
application. Models that correlate the aforementioned variations in microstructure with transport properties 
and performance could provide much-needed guidance in this process10,36.

Analytical relations between proton conductivity and CCL composition.  Structure- and compo-
sition-dependent expressions for the proton conductivity of the CCL often employ semi-empirical power-law 
relations such as the Bruggeman relation or they are derived from percolation theory. The Bruggeman relation, 
proposed in 193537,38, is widely adopted for transport properties in heterogeneous media and provides a satisfy-
ing fit to experimental data in specific applications, e.g., gas diffusion in porous media39, thermal conductivity of 
composite materials40, or magnetic permeability of ferromagnetic composites41. It expresses the relative reduc-
tion of a transport coefficient in the medium compared to the known bulk value through a simple power law. 
The semi-empirical relation proposed by Bruggeman implies an exponent of 1.5. This value was also adopted in 
modeling works for the proton conductivity in PEFC catalyst layers8,9,42, 43. Other works suggested values of 1.044 
or 2.045,46, leaving the value up to debate and revealing the lack of generality of the approach.

The original approach taken by Bruggeman37,38 to derive a volume-averaged transport coefficient originally 
assumed a spherical geometry of primary particles forming the the conductive phase. Hashin and Shtrikman 
extended Bruggeman’s approach to spherical particles covered by a uniform, conductive film47. Das et al.48 applied 
the coated sphere model of Hashin and Shtrikman to PEFC catalyst layers by introducing a second coating, which 
represents the pore space between agglomerates, and introduced a dependence on the void fraction in the CL 
material. Since the approach of Das et al. describes the upper limit of proton conductivity, an additional empiric 
factor was introduced to account for a potentially lowered conductivity due to effects of ionomer geometry and 
agglomerate shape, i.e., the proposed correlation could not analytically resolve the dependence on ionomer 
morphology.

Percolation theory offers another approach to relate the proton conductivity with ionomer content6,7. The 
mathematical fundamentals of percolation theory were originally derived by Broadbent and Hammersley in 
195749 and form a sound statistical-physical basis to describe transport properties in heterogeneous media50,51. 
Above the percolation threshold, the dependence of proton conductivity on ionomer volume fraction is given by 
a power-law, with a critical power-law exponent that depends solely on the dimension of the percolating system 
( ≈ 2 in the 3D case), whereas the percolation threshold depends on the the lattice structure or morphology of 
the continuous phase. In contrast to the Bruggeman relation, percolation theory provides a direct connection 
between relevant parameters, i.e., critical exponent and percolation threshold, and the microstructure of the 
material of interest. Eikerling et al.6 suggested to use an ionomer volume fraction of 0.1...0.2 for the percola-
tion threshold of ionomer in catalyst layers, indicating a high level of connectedness in the ionomer network. 
Additionally, percolation theory enables the prediction of other structural features, such as the interfacial area 
of different phases or the relative utilization of a randomly connected phase10.

A different approach was taken by Liu et al.52 who derived a relation assuming spherical, cubically packed 
catalyst particles that are all fully covered by an ionomer film of uniform thickness. To fit the model prediction 
to their dataset, the authors introduced an adsorbed ionomer volume of I:C = 0.3 and a roughness factor (rf) 
of 1.6. The proposed relation describes the singular dataset considered in their work well, but was of limited 
applicability to other CCL material combinations. Additionally, the proton conductivity does not converge to the 
value of bulk ionomer upon increasing the ionomer content. However, as common in the literature, Liu et al.52 
assumed the proton conductivity of the polymer electrolyte membrane to approximate the value of bulk ionomer.

From comparing the experimental findings with available relations for proton conductivity, a clear shortcom-
ing can be identified. Whereas both the Bruggeman relation and percolation theory treat the CCL as an ideal 
random medium and do not address partial order in the ionomer morphology, the geometry-based relation 
proposed by Liu et al. cannot fully capture variations in the ionomer morphology. To bridge this gap and reveal 
essential structural elements in ionomer morphology, the CCL microstructure can be studied using pore-scale 
simulations.
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Image‑supported modeling: assisting the analysis of ionomer morphology.  The simulation of 
material microstructures dates back to the 1970s and 1980s when Joshi53 and Quilibier54 pioneered the funda-
mentals of Gaussian processes for stochastic image generation. These early works already outlined the potential 
of simulations on generated 3D material images to extract transport properties. Stochastic image generation has 
been applied to PEFC catalyst layers, where multiple works have focused on gas and/or vapor transport through 
the pore space55–59. In the following, we will briefly review works that include simulation of proton conductivity 
of the electrolyte phase.

Sui et al.60 employed a catalyst layer imitation consisting of spherical carbon particles that were randomly 
placed and fully coated by an ionomer film of uniform thickness. Since the authors aimed to optimize the CCL 
composition, the single parameter of interest was the ionomer volume fraction of the CCL. Variations of ionomer 
morphology were not addressed. Nonetheless, this pioneering work demonstrated how relations derived from 
pore scale simulations can form the basis for cell optimization with basic electrode models.

In the time between 2008 and 2012, multiple works developed more sophisticated simulation approaches of 
proton transport properties. Hattori et al.61 used randomly placed carbon particles and varied the microscopic 
ionomer thickness and coverage by allowing randomness in the distribution of the ionomer film. They did not 
evaluate the proton conductivity but calculated the polarisation curve directly through simulation of reactive 
transport in the 3D model system. From studying variations in ionomer distribution, uniform films with high 
coverage were found to be most favorable to yield high cell performance. This was rationalized by a favorable 
connectivity of the electrolyte phase and a high catalyst utilization.

Kim and Pitsch62 aimed to refine stochastic structure generation and proposed a sphere-based annealing 
method, which built on a Gaussian field and used two-point correlation functions from experimental CCL 
images. They found the conductivity to follow a power law with an exponent of 2. Below an ionomer volume frac-
tion of 0.25, simulation results were seen to deviate from the power law. However, the authors did not interpret 
these results in terms of a percolation threshold.

To describe the incremental self-assembly of the CCL structure during ink stage, Siddique et al.63 pro-
posed an alternative technique for image generation. At first, random seeds were placed in a volume of 
200 nm× 100 nm× 100 nm with 2 nm resolution. Carbon particles agglomerated around the seed points. 
Subsequently, ionomer was iteratively aggregated around seeds on the carbon particles surfaces. A variation of 
the I:C ratio revealed a dramatic discrepancy between the Bruggeman relation and simulation results, but the 
results closely matched the percolation law with percolation threshold of 0.2.

Lange et al.64 developed an algorithm based on randomly placed spheres and widely varying geometric 
parameters, such as particle radius and overlap tolerance. Bigger particles and larger overlap, i.e., less tortuous 
geometries with less curvature of the ionomer film, led to an increased proton conductivity. Thus, the curvature 
and roughness of agglomerates must be considered as a source of error when running simulations of transport 
in thin films. In a follow-up work, Lange et al.65 considered several reconstruction algorithms that did not reveal 
a significant impact on effective transport properties in most cases. In contrast, the results showed a significant 
dependence on the assumptions about the ionomer morphology, i.e., whether ionomer uniformly covers catalyst 
agglomerates or randomly aggregates throughout the catalyst layer.

More recently, Inoue et al.66 modeled the aggregation of primary carbon particles using an algorithm that 
emulates particle attraction and repulsion. Two distinct ionomer morphologies were simulated: carbon aggregates 
coated with ionomer of uniform thickness and partial coverage; and heterogeneously distributed ionomer, where 
the ionomer resembled a wetting liquid that formed menisci with uniform curvature. Both cases exhibited a 
power-law behavior at low I:C ratios ≤ 0.5 with an exponent of 1.8. In the case of uniform curvature, a different 
power-law was observed with an exponent of 3 at I:C > 0.5 , which was linked to inter-agglomerate bridging of 
the ionomer phase. Since ionomer coverage evolved over I:C ratio in a non-linear manner, the impact of different 
ionomer film thickness, coverage and content could not be fully disentangled.

The question arises whether the ionomer structure can be resolved through reconstruction from experimental 
tomographic images. Lange et al. demonstrated that a resolution of 2 nm in a cubic volume of (200 nm)3 gives 
accurate results for finite-element steady-state proton transport simulations at reasonable computational costs64,67. 
3D imaging techniques like nano-CT21,68 and FIB-SEM55,67,69,70 reach a resolution of 10 to 100 nm, which is suf-
ficient for visualizing the ionomer morphology on the agglomerate level, but cannot reliably resolve finer details, 
such as ionomer film thickness. Additionally, carbon and ionomer have similar densities, thus only a binary image 
resolving solid and void space can be obtained. However, exchanging the protons of the sulfonic headgroups with 
Cs+ ions creates sufficient contrast to resolve the ionomer within the CCL. Using this technique, Komini Babu 
et al.21 reported images from CCLs with three different ionomer loadings ( 35 wt% , 50 wt% , 60 wt% ) and observed 
changes in ionomer morphology that affected the proton conductivity in simulations and the cell performance 
in experiments. Images that resolved voxels of 16 nm3 were used to run simulations of proton transport, partially 
resolving the fine structure of agglomerates and thin films. At the lowest ionomer content, poorly connected 
aggregates formed, whereas a thick uniform film on the catalyst aggregates formed with increasing amount of 
ionomer. In a recent study, Goswami et al.71 applied a similar approach to PEFC catalyst layers degraded by 
carbon corrosion, extending the perspective on ionomer morphology to be subject to changes during the cell 
life-cycle, which consequently might evoke changes in proton conductivity during operation.

Simulations based on experimentally obtained images allow studying only a few points in the parameter space 
of ionomer morphology. Works discussed above have demonstrated that generating synthetic 3D images provides 
an alternative pathway to investigating the ionomer morphology since a wide range of structural parameters 
can be simulated. However, a systematic study on the relation between ionomer structure and proton transport 
could not be found in the literature.

In this work, we have developed analytical relations between ionomer morphology and proton transport 
properties in CCLs. To first understand how the CCL microstructure affects proton transport, we have applied 
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stochastic image generation for a wide range of ionomer coverage and film thickness and simulated the effec-
tive proton conductivity. Subsequently, the complexity of simulation results has been reduced by resorting to 
percolation theory to yield analytical relations between decisive structural features in ionomer morphology and 
the effective proton conductivity of the CCL.

Model and methodology
This work describes the structure of a conventional CCL, in which primary Pt/C particles aggregate and are par-
tially covered by a skin-like ionomer film. The coverage and thickness of the ionomer film can vary significantly, 
albeit being accessible in experiment72,73, rendering them suitable parameters for modelling works.

The model distinguishes two pore size domains, following the classification from previous modeling works6, 

10,74,75. The carbon support contains a certain volume fraction of primary pores (1 to 10 nm diameter), whereas 
secondary pores (10 to 100 nm diameter) form the space between agglomerates76. The ionomer is deposited at the 
agglomerate interface in secondary pores and is assumed to be excluded from primary pores since the ionomer 
macromolecules are too big to enter.

Correlations between the proton conductivity and the ionomer morphology have been established in two 
steps (see Fig. 1). First, a 3D image of the CCL structure has been generated based on a synthetic binary image. 
The phases of ionomer, carbon and pore space have been stochastically reconstructed. The ionomer morphology 
depends on ionomer coverage and thickness. Next, a steady-state finite-element simulation of proton conductiv-
ity within the ionomer phase has been conducted and percolation properties have been evaluated. We have used 
PoreSpy, an open source software package for Python77, to run image generation, manipulation, evaluation 
and conductivity simulation. All functions and routines referred to in the following are included in PoreSpy 
unless denoted otherwise. To support the analysis of the simulation results, we have used a composition model 
for the CCL from our previous work78.

CCL image generation.  Image generation begins by creating a binary image that distinguishes between 
a condensed agglomerate phase, which lumps together carbon, catalyst, primary pores and ionomer, and the 
secondary pore space. In an operational catalyst layer, water will condense in primary pores. Depending on the 
operational conditions, the secondary pores can be flooded as well. Water renders the catalyst layer active in the 
first place, as it serves as reaction medium and proton shuttle. The ionomer also absorbs water, which mobilizes 
protons provided by the ionomer, thus enabling a high proton conductivity. Therefore, we consider the ionomer 
phase to include water. Bulk-like liquid water condensed in primary and the secondary pores is not resolved, 
since it only marginally contributes to the proton conductivity as the proton concentration is several orders of 
magnitude lower compared to the ionomer electrolyte phase79.

Cubic volume elements were used with a length conversion factor of 1 vx = (2 nm)3 , adopting the proposed 
resolution from Lange et al.64, which was found to give numerically convergent results also in this work (see 
Fig. S1 in the supplementary material). Binary tomographic images of CCL materials reported in the literature 
resemble random heterogeneous media in which the local thickness of the solid phase exhibits a Gaussian size 
distribution70,80,81, with no additional stochastic features. Therefore, our work has employed as well as simple 
Gaussian field without further features, such as 2-point-correlations. Further, Lange et al.64,65,67, demonstrated 
that the choice of reconstruction algorithm has a limited impact on simulation results, if essential structural 
features of the CL structure are correctly captured (agglomerated Pt/C particles, ionomer film formation). For this 
purpose, PoreSpy is the most suitable tool as it allows close control of generated geometries. The reconstruction 

Figure 1.   The image generation workflow of the model builds on binary tomografic images, which are 
combined with information from a structure based model78. Calculation of proton conductivity is performed 
subsequently with the objective to understand underlying structure-property relation of the CCL material.
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algorithm presented in the following employs the structural picture of CCL microstructure as supported by the 
experimental literature19,76, consisting of the following assumptions: 

1.	 Carbon support and ionomer form an agglomerates structure.
2.	 Ionomer does not enter the intra-agglomerate pore space.
3.	 Ionomer forms a thin film of uniform thickness.
4.	 The spatial distribution of the solid structure is a Gaussian field, i.e., has no local ordering.
5.	 Ionomer is randomly distributed in finite-sized building blocks (of ‘patches’) on the agglomerate surface.

Transferring this understanding of CCL microstructure to this work, the PoreSpy software has been used to 
generate images of agglomerated structures by applying a Gaussian blur filter to a random noise field. This step 
has been followed by applying a direct threshold to obtain a desired volume fraction of agglomerates xagg . The 
resulting ‘agglomerate phase’ served as a template for the reconstruction of the agglomerated structure. This 
procedure has been implemented as the blobs function in PoreSpy. The standard deviation σb for the kernel 
of the Gaussian filter was adjusted to match the desired average agglomerate size ragg , which is controlled by the 
input parameter B in the blobs function,

The obtained images were smoothed using binary_opening from the scipy.ndimage package and a 
sphere with with a radius of 3 vx as structural element. An exemplary image is depicted in Fig. 2(1).

To reconstruct the internal structure of agglomerates, spherical carbon particles with radius rcarbon have been 
placed inside the agglomerate phase (see Fig. 2(2)). The routine pseudo_electrostatic_packing has 
been used to fill the agglomerate space with carbon particles. This packing algorithm mimics the effect of an 
electrostatic field pulling particles to the inside of the agglomerate phase. Running an Euclidean distance trans-
form over the agglomerate phase returns a scalar value for each voxel that is interpreted as a measure for the ‘field 
strength’. Carbon particles have been iteratively placed at the point of maximum field strength that is not occupied 
by other particles. For further details of the algorithm we refer the reader to the documentation of PoreSpy77. 
Carbon particles were allowed to overlap by a third of the carbon particle radius and protrude into the second-
ary pore space by half of their radius. This procedure of reconstructing the carbon particles was adopted from 
a preceding work of Sadeghi et al.82. To reconstruct the primary pore space, the space between carbon particles 
was filtered for pore size using local_thickness and applying a threshold r1 . Pores below that threshold are 
defined as primary pores and lie entirely inside the agglomerate phase (see Fig. 2(3)). All remaining void space 
between the agglomerates is defined as secondary pore space. In the following, the combined phase of carbon 
particles and primary pores replaces the agglomerate phase, rejecting the template agglomerate phase from the 
image. This distinction of primary and secondary pores in the phase image serves to identify the deposition spots 
of ionomer on the interface of agglomerate and secondary pore space.

The deposition of ionomer on the outer surface of agglomerates employs mathematical morphology opera-
tions for binary images provided by the sciPy package83. A binary dilation of one voxel has been applied to 
the agglomerate phase, defining the agglomerate surface. From the resulting set of voxels, a random position 
was picked to place a piece of ionomer. An ionomer patch was generated from the binary product of a sphere 
with radius rion and the set of voxels identifying the agglomerate surface. An ionomer ‘patch’ was then created 
by running another binary dilation on the ionomer film thickness tion on the picked subset marking the ionomer 
surface element to be covered with ionomer. The resulting building block of ionomer was added to the ionomer 
phase. The result is exemplary illustrated in Fig. 2(4). Through summation of the voxels in the intersection of the 
ionomer phase and the voxels identifying the agglomerate surface, the ionomer coverage aion has been estimated. 
It is defined as the ratio of surface area covered by ionomer to the agglomerate surface,

The process has been repeated until a predetermined ionomer coverage was reached.
The final image was checked for consistency by evaluating the volume fraction of each phase and the size 

distribution of pores, agglomerates and ionomer. The volume fractions have been calculated as the ratio of the 
sum of the voxels in one phase to the total voxel count of the image,

The size distributions of pores, ionomer and agglomerate were obtained from running the function local_
thickness on each phase which assigns each voxel the value of the largest sphere that could fit in the local 
pore that includes the voxel. The function pore_size_distribution returns the histogram data for the 
distribution of pore sizes, ionomer film thicknesses and agglomerate sizes. Finally, the image was saved to a .vtk 
file and visualized in ParaView. All parameters used for the image generation workflow are listed in Table 1.

(1)σb =
L

40 B
and

(2)B =
L

40 ragg (1− ln(1− xagg ))
.

(3)aion =
Acovered

Aagg
.

(4)xi =

∑

vxi

L3
.
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Ionomer coverage and ionomer film thickness are the most sensitive parameters and are of primary interest 
in this work. All other parameters were tested for their sensitivity as well, as reported in Fig. S2 in the supple-
mentary material.

Calculation of proton conductivity.  The proton conductivity of the obtained CCL images has been eval-
uated by solving the following steady-state equation in voxel domains occupied by ionomer,

The function tortuosity_fd was used to compute the proton conductivity through the ionomer phase using 
a finite difference approach, similar to the widely used TauFactor software84. The function operates by apply-
ing boundary conditions automatically for a specified direction, i.e., proton flux enters the volume through one 
face of the cube and leaves through the opposite face. At the inlet and outlet face of the cube a constant potential 
and all other faces a zero-flux condition was applied,

The function returns the relative conductivity g,

(5)∇ · (−σion∇φ) = 0.

(6)φin = const., φout = const. with φin > φout and

(7)n⊥ · ∇φ = 0 at all other faces.

Figure 2.   The workflow for image generation follows four steps: (1) generation of a binary image, based on 
tomographic data, (2 + 3) reconstruction of the agglomerate structure, resolving carbon particles and primary 
pores, and (4) deposition of ionomer onto the agglomerate surface.
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which is normalized to the conductivity of the polymer electrolyte membrane, σPEM , a known property4,52. By 
using a dimensionless proton conductivity, this work aligns with previous works4,85 and allows comparing differ-
ent operating conditions and ionomers with different molecular structure, ion exchange capacity or molecular 
weight.

CCL composition model.  To discuss the evolution of ionomer morphology over a range of I:C ratios, 
we applied the composition model developed previously in Ref.78. It accounts for the dependence of ionomer 
morphology on ink and process parameters via the initial film thickness, t0 , and a dispersion parameter, kA . The 
relations for ionomer film coverage and thickness are

where x denotes the dimensionless ionomer volume per secondary pore volume in an ionomer-free reference 
sample,

and kV depends on t0 and the secondary pore space geometry via A2 and V2,0,

As the ionomer film partially occupies the secondary pore space, the remaining ‘free’ secondary pore volume 
is obtained as

The volume of the ionomer film is given by

The difference between film volume and total ionomer volume used to fabricate the CL,

constitutes ‘excess’ ionomer, which forms large aggregates. Volume fractions are defined as follows to perform 
the analysis of the CL composition,

Here, the agglomerate volume is a sum over carbon and primary pores,

The fraction of total ionomer volume xion,total is given as the sum of ionomer film volume and excess ionomer 
volume,

(8)g =
σCL

σPEM
,

(9)aion = 1− exp (−kAx) and

(10)tion =
V2,0

A2

1− exp(−kV x)

1− exp(−kA x)
,

(11)x =
mI:C

ρionV2,0

(12)kV = t0kA
A2

V2,0
.

(13)V2,free = V2,0

(

1− exp(−kV x)
)

.

(14)Vion =
A2

V2,0
aiontion.

(15)Vex =
mI:C

ρion
− Vfilm,

(16)xi =
Vi

∑

i Vi
with i ∈ {2, agg , ion, ex}.

(17)Vagg = 1/ρcarbon + V1.

Table 1.   Base case parameters for stochastical CCL image generation.

Parameter Value Unit

L 200 nm

xagg 0.5 –

ragg 20 nm

rcarbon 10 nm

r1 6 nm

rion 10 nm

aion 0.5 −

tion 10 nm
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Table 2 lists values used for the parametrization of the composition model are listed.

Extraction of reference data from the literature.  We collected literature data for proton conductiv-
ity of CLs from various sources listed in Table 3. If reported, the respective value of σPEM was adopted as the 
reference value for the dimensionless proton conductivity g. If not reported, the proposed correlation for PEM 
conductivity from Gerling et al. 4 was applied to obtain the value of σPEM for the respective operating conditions, 
i.e., relative humidity and temperature, used in a particular literature source,

Liu et al. 52 demonstrated that for a correct description of the dependence of g on xion , the water uptake 
and the swelling of ionomer need to be taken into account. Thus, if not already done in the respective source, 
we calculated the wet ionomer volume fraction xion from the data for the dry ionomer volume fraction xion,dry , 
using the correlations proposed by Liu et al.52,

where ρW and ρion,dry denote the densities of water ( ≈ 1 g cm−3 ) and dry ionomer ( ≈ 2 g cm−3 ), and MW is the 
molecular weight of water ( = 18 gmol−1 ). For the EW the reported value of the ionomer value was applied. If 
not reported, EW = 1000 gmol−1 was assumed.

In some references, only the I:C ratio was reported. In such cases, the ionomer volume fraction was estimated 
from other CCL data, e.g., CCL thickness, mass loading and densities of ionomer and carbon or the CCL porosity.

(18)xion,total = xion + xex .

RPEM = 1.2 RH−1.44 exp

(

7.0 kJ mol−1

RT

)

[m� cm2] and

σPEM =
18 µm

RPEM
.

(19)� =

[

1+ 0.2325 RH2 T − 303K

303K

]

(14.22 RH3 − 18.92 RH2 + 13.41 RH)

(20)xion = xion,dry

(

1+
ρion,dry

ρW

�MW

EW

)

,

Table 2.   Parameters to predict the ionomer morphology as a fuction of ionomer content. The parameters t0 
and kA allow analyzing the impact of ink processing.

Parameter Value Unit

V2,0 0.8 cm
3/gcarb

V1 0.2 cm
3/gcarb

A2 20 m
2/gcarb

t0 {4, 6, 8} nm

kA {2, 3, 5} −

ρion 2 g/cm3

ρcarbon 2 g/cm3

Table 3.   Sources in literature for experimental data correlating CCL proton conductivity with ionomer 
content.

Reference
Method to measure 
σCCL

Reference value for 
σbulk

Ionomer content 
information Relative humidity RH Temperature T Ionomer used

Liu et al.52 EIS Provided as g As xion 35%, 50%, 75%, 122% 80 °C Nafion 1050 EW, Nafion 
850 EW

Yakovlev et al.12 EIS 120 mS cm−1, estimated As I:C 100% 60 °C Nafion 1100 EW

Boyer et al.44 DC 100 mS cm−1, provided As xion 100% 50 °C Nafion 960 EW

Suzuki et al.86 EIS 89 mS cm−1, estimated As xion 100% Room temperature Nafion, no EW reported

Du et al.87 DC 300 mS cm−1, provided As xion 100% 80 °C Nafion, no EW reported

Modestov et al.79 EIS 7 mS cm−1, provided As I:C 100%
Room temperature, 
22–25 °C Nafion, no EW reported

Havránek and 
Wipperman88 EIS 120 mS cm−1, provided As xion Flooded 40 °C Nafion, no EW reported
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Typically, the proton conductivity can be determined from electrochemical impedance spectroscopy (EIS) 
measurements. The CCL proton conductivity is extracted from EIS spectra by fitting a transmission line model or 
equivalent circuit model. However, some sources obtained the proton conductivity through DC measurements. 
These different methods can give diverging results under low humidity conditions. Qi et al.85 proposed that AC 
measurements, such as EIS, include more tortuous and dead-ended pathways. Under humid conditions, the 
discrepancy is diminished as condensated water provides bridging pathways that lower the apparent tortuosity. 
High humidity was considered in all data reported here, thus a divergence between AC and DC methods is not 
suspected in the dataset.

Results
In the following, firstly, we review various sets of literature data and discuss the observed trends. Secondly, we 
present a parameter study to understand these trends and identify the essential structural elements that determine 
the proton conductivity. Thirdly, we derive a modified approach based on percolation theory that accounts for 
insights from simulations of proton conductivity. In the fourth step, implications of our results for CCL fabrica-
tion and the prospects of the approach to guide the design of CCLs with tailored properties will be discussed.

Literature data and classical relations for proton transport.  The selected datasets for ionomer con-
tent xion and relative conductivity g are plotted in Fig. 3, together with relations proposed in the literature. The 
Bruggeman relation with an exponent of α = 1 roughly fits the data from Boyer et al.44, which also sets the limit 
for the highest reported values of relative conductivity. Assuming that the proton conductivity of the CCL should 
not be higher than σPEM , values appearing significantly above this limit should not be possible. Other datasets 
(Suzuki et al.86, Yakovlev et al.12, Havránek and Wipperman88, Du et al.87) scatter around a classical Bruggeman 
relation with α = 1.5.

Figure 3.   Comparison of literature data12,44, 52,79,86–88 for proton conductivity and available relations for 
heterogeneous random media (Bruggeman relation, percolation theory, Hashin and Shtrikman coated sphere 
model proposed by Das et al.48 and spherical film model proposed by Liu et al.52). Please note that the original 
equation provided in Ref.48 has been rearranged for the sake of clarity.
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Datasets of Liu et al.52, Havránek and Wipperman88, and Modestov et al.79 are compatible with a percolation 
threshold of xc ≈ 0.1 . The dataset from Modestov et al.79 follows a percolation law with this percolation thresh-
old and a critical exponent of 2. The thin-film model of Liu et al.52 describes their own dataset well. However, 
the model is physically inconsistent since it predicts relative conductivities g > 1 for xion → 1 , where as g must 
approach 1 from below.

Overall, the cited literature data do not exhibit a unique relation between g and xion . The reason might be 
difference in fabrication approaches and conditions that result in different ionomer morphologies.

Simulation results.  To unravel the relations between proton conductivity and ionomer content, we have 
conducted a parameter study for ionomer coverage aion and film thickness tion . The results for g are plotted over 
xion in Fig. 4a. The highest values for g are obtained for morphologies with large ionomer coverage, aion > 0.8 . 
In this case, g scales almost linearly in both t and xion for small ionomer contents. Extrapolation towards 
xion = 0 indicates a vanishing percolation threshold. Please note that our simulations could not cover the range 
0 nm ≤ tion < 4 nm due to the limited resolution of the generated images. A film represented by only one voxel 
in thickness would disconnect on the curved surface of the agglomerates and would give a non-physical numeri-
cal fragment. Additionally, films thinner than 5 nm have been rarely observed in literature. Hence, the resolution 
chosen in this work (2 vx or 4 nm) can be considered adequate.

A different picture emerges for scenarios where aion < 0.5 . A percolation threshold is evident around 
xion ≈ 0.15 . Below this threshold, the simulation results indicate very low proton conductivity. Where the thresh-
old is exceeded, the conductivity scales with a power-law behavior with exponent α ≈ 2 . The intermediate cases 
of moderate ionomer coverage interpolate between the limiting cases of high and low ionomer coverage.

The underlying structural pictures explaining the simulation results are illustrated in Fig. 4b (A)–(D). In 
the case of a thin film (A), percolation on the agglomerate surface governs proton conductivity. Oppositely, at 
low coverage and high thickness, randomly placed coarse ionomer pieces connect (B), leading to a situation 
that resembles 3D continuum percolation. The intermediate cases (C) have a moderate ionomer coverage, thus 
percolation on the agglomerate surface plays a role, but also some random connectivity of ionomer across the 
inter-agglomerate space occurs. All three cases converge with increasing amount of ionomer into case (D). If 
all volume not already occupied by Pt/C agglomerates is filled with ionomer no variation in the morphology is 
possible, hence g converges into a single value, as observed in the simulation results.

To analyse the impact of the support structure, in Fig. 5a the volume fraction of the agglomerate, xagg , was 
varied between 0.1 and 0.9, while the ionomer film thickness was held constant at tion = 10 nm . The simula-
tion was repeated for aion = {0.4, 0.6, 0.7, 0.9} . For xagg = 0.3 ... 0.7 , secondary pore space is mostly open, i.e., 
pathways reaching through the whole CL exist. In the same range, the agglomerate phase is continuous as well, 
as illustrated in Fig. 5c. If both phases provide continuous pathways, then the surface of the agglomerate-pore 

Figure 4.   (a) Simulation results from variation of ionomer coverage aion and thickness t. The agglomerate 
volume fraction was held constant ( xagg = 0.5 ). The proposed relation based on percolation theory is plotted as 
well. (b) Four cases of ionomer morphology can be identified and their structural images are illustrated.
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interface is also well-connected and allows pathways for proton conductivity across the CL. Note that a structure 
with xagg < 0.3 would be physically unstable, since agglomerates would be largely disconnected.

When xagg exceeds 0.7, secondary pores become closed and disconnected and the proton conductivity declines 
steeply. Between these two boundaries, g exhibits a maximum, whose height increases with aion above ≈ 0.4 . 
Below that value, no closed path for proton transport is formed by the ionomer film deposited on the agglomer-
ate-pore interface. This implies two requirements for high high proton conductivity: not only the agglomerate-
pore interface must provide a well-connected network; also the ionomer coverage must be sufficiently high for 
the ionomer to percolate.

Analytical relations for proton conductivity.  The previous discussion has shown that the proton con-
ductivity depends on the surface density of agglomerate/pore interface per CCL volume. This finding allows 
to derive a first analytical approach to describe the simulation results. The percolation theory approach for the 
interface density I(xA, xB) in a binary mixture can reproduce the trend in xagg (see Fig. 5b),

where xA and xB denote the percolating phases in an binary continuum and P(x) the percolation probability, 
represented by a sigmoid function,

with b = 0.01 and xc = 0.3 . As the conductivity scales with the interfacial surface area between agglomerate and 
the complementary phase of pores and ionomer, we replace xA with xagg . Thus, xB becomes 1− xagg , yielding

Further, simulation results indicate that for thin films g scales with a power-law in ionomer coverage. Therefore, 
a percolation law for conductivity as a function of ionomer coverage aion is applied,

(21)I(xA, xB) = xAP(xA)xBP(xB),

(22)P(x) =
1

1+ exp
(

−(x−xc)
b

)

(23)gfilm ∼ I(xagg ) = xaggP(xagg )(1− xagg )P(1− xagg ).

Figure 5.   (a) Simulation results of proton conductivity for the variation of xagg and ionomer coverage aion . 
Ionomer film thickness was held constant ( t = 10 nm ). (b) The observed trend can be described using Eq. (23) 
for the percolation interfacial surface area between agglomerates and secondary pores. (c) The underlying 
structural images are illustrated.
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Here, H represents the Heaviside step function and ac the percolation threshold. A linear scaling of g with film 
thickness has been observed in simulations,

Combining Eqs. (23), (24) and (25) yields an analytical relation for the proton conductivity in thin films,

where Aagg

VCL
 is a scaling factor that accounts for the total agglomerate surface per CCL volume. It has the units of 

an inverse length and depends on agglomerate size. The simulation results for thin films revealed that the surface 
to volume ratio of a cylindrical geometry can be applied,

Of course, the agglomerate phase has no cylindrical geometry. However, when the local thickness is evaluated 
by finding the largest sphere to fit, one could span an approximately circular perimeter and apply a differential 
cylindrical volume element with V = πr2aggdL and A = 2πraggdL.

If the ionomer film is sufficiently thin, xion can be calculated from tion and aion,

Here I∗(xagg ) indicates the same interfacial factor as I(xagg ) in Eq. (23), but includes the non-percolating interfa-
cial area. Thus, the factors P(x) and P(1− x) are dropped. Still, I∗ ≈ I in xagg = 0.3...0.7 . Anyway, values outside 
this range are not of relevance. In a CL with xagg < 0.3 the mechanical suppport collapses, thus such a CL is 
unphysical; at xagg > 0.7 the pore volume closes and does not provide percolation pathyways.

The additional factor τagg in Eq. (26) accounts for the tortuosity of the curved agglomerate surface. Assum-
ing a spherical curvature of the smoothed Gaussian field used in this work, τagg = 1

π
 was chosen and matches 

the simulation results.
When Eqs. (26) and (28) are combined, the factors I(x)Aagg

VCL
 cancel out, yielding an expression for gfilm , which 

solely depends on xion and aion,

In scenario (C) of Fig. 4, a thin film does not form and connectivity establishes across the inter-agglomerate 
space. The volume fraction of the inter-agglomerate space is defined as x2 = 1− xagg . An adapted percolation 
law can be applied, accounting for the connectivity of ionomer in the secondary pore space,

In Eq. (30) the ionomer volume fraction in the inter-agglomerate space is decisive for establishing percolating 
pathways. Further, g2 scales with the connectivity of the inter-agglomerate space,

where the inter-agglomerate volume fraction x2 is used to describe percolation across the catalyst layer volume. 
Merging Eq. (30) with Eq. (31) yields the analytical expression for g2 as a function of xion and x2,

If xion → x2 , i.e., all secondary pore volume is replaced by ionomer, Eq. (32) converges to a percolation law for 
random 3D media.

The expressions for gfilm and g2 describe the limiting cases where solely thin films on the agglomerates or 
inter-agglomerate connections control the conductivity. However, for the majority of ionomer morphologies, an 
intermediate behavior will occur, i.e., the contributions from the thin film and inter-agglomerate percolation will 
superpose in a random network type fashion. Thus, the effective conductivity can be anything between a series 
of resistors and a parallel circuit. The highest proton conductivity conceivable, g+ , is the sum of both contribu-
tions, assuming ideal parallel proton transport pathways,

(24)gfilm ∼ H(aion − ac)

(

aion − ac

1− ac

)2

.

(25)gfilm ∼ tion.

(26)gfilm = τagg
Aagg

VCL
I(xagg )H(aion − ac)

(

aion − ac

1− ac

)2

tion,

(27)
Aagg

VCL
=

2

ragg
.

(28)
xion = I∗(xagg )

Aagg

VCL
aiontion

= I∗(xagg )
2

ragg
aiontion.

(29)gfilm =
1

π
H(aion − ac)

(

aion − ac

1− ac

)2 xion

aion
.

(30)g2 ∼ H(xion/x2 − xc)

(

xion/x2 − xc

1− xc

)2

.

(31)g2 ∼ H(x2 − xc)

(

x2 − xc

1− xc

)2

,

(32)g2 = H(xion/x2 − xc)

(

xion/x2 − xc

1− xc

)2

H(x2 − xc)

(

x2 − xc

1− xc

)2

.
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This expression is plotted in Fig. 4 together with the simulation results. The linear dependence for thin films with 
high coverage can be clearly distinguished. The threshold behavior at low ionomer coverage is well captured. The 
extend and slope of the linear range in xion scale with aion and provide a transition for the full spectra of ionomer 
morphologies studied in the simulation.

In Fig. 6, g+ was plotted for moderate and high ionomer coverage, aion = 0.6 and 1.0, together with datasets 
from the literature. The proposed analytical solution for g+ cannot capture the literature data. The deviation is 
especially large for datasets with high conductivities and a linear trend over xion , e.g., from Boyer et al., indicating 
that the conductivity of the ionomer thin film is underestimated by the model. As discussed above, agglomerate 
roughness largely affects proton conductivity. The roughness and curvature in real catalyst layer materials might 
be significantly lower than in simulations due to water uptake or ionomer swelling85 that effectively reduces the 
tortuosity of the proton conducting pathways. Further, experimental work indicated that the assumption of 
gion ≈ gbulk might not be true for thin ionomer films. Experimental works reported a lower proton conductivity of 
PFSA thin films on SiO2 substrates89,90 and attributed the impaired proton mobility to the lack of phase-separated 
water91. However, on Pt substrates a well defined water layer at the Pt/ionomer interface forms92,93, which boosts 
conductivity by one order of magnitude compared to SiO2 substrates94. Hence, it might be the case that the thin 
film conductivity in catalyst layers is even higher than the ionomer bulk conductivity. A recent modeling study 
from the literature evaluated different conceivable molecular structure regimes that might establish on real Pt/C 
catalyst substrates and found a significant impact on the resulting proton conductivity of the CCL17. However, 
both the effects of tortuosity and distinct ionomer conductivity cannot be quantified reliably. Setting τagg = 1 in 
Eq. (26) yields good agreement with the full range of experimental data, hinting that the thin film conductivity 
in polymer-based catalyst layers is effectively increased by a factor of ≈ 3.

The comparison of the corrected relation g+ with literature data illustrates how distinct ionomer morpholo-
gies can explain different trends in proton conductivity and their dependence on structural parameters, such as 
aion . Single datasets are well captured by the model and can be linked to different scenarios of ionomer morphol-
ogy. For instance, the dataset of Boyer et al.44 closely follows g+(aion = 1) . Thus, the observed linearity of g in xion 
can be explained by a thin film morphology present in the CCL material studied. The datasets of Yakovlev et al.12, 
Suzuki et al.86 and Du et al.87 align along the relation for the intermediate morphology of moderate ionomer 
coverage. Some data, e.g., from Modestov et al.79, closely follow the relation for low ionomer coverage. Only the 
dataset of Liu et al.52 seems to be difficult to capture by any relation. It is possible that the ionomer morphology 
largely changes as ionomer content increases, i.e., the ionomer coverage might be a function of xion.

If the approximation g+ is applied to structures with high ionomer content, i.e., xion > 0.5 , it might overesti-
mate the proton conductivity. The two pathways for proton conductivity (ionomer thin film and inter-agglom-
erate percolation) are not separated anymore because the ionomer thin film and larger ionomer pieces in the 
inter-agglomerate space increasingly overlap. This renders the assumption of two parallel pathways for proton 
transport invalid, thus the effective conductivity will be lower. However, the proposed approximation accurately 
describes the simulation results over the catalyst layer composition in the range of technical relevance.

Adjusting CCL fabrication parameters to tailor proton conductivity.  The question arises how 
ionomer coverage and film thickness depend on the I:C ratio and how the ionomer structure might be tuned 
during CCL fabrication. Therefore, we have employed a composition model and aimed at providing various 

(33)g+ = gfilm + g2.

Figure 6.   Comparison of literature data for proton conductivity and proposed relations. As a correction for 
distinct thin film conductivity and roughness effects, the factor 1

π
 was dropped in gfilm.
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references to practical approaches (ionomer content, ionomer dispersion by solvent, carbon surface modifica-
tions), which implement the specific modifications of the CCL microstructure.

Experimental studies varying the ionomer content reported that the ionomer coverage increases sharply 
upon initially adding of ionomer. Subsequently, a growth in film thickness follows76,95. At high ionomer contents, 
excess ionomer aggregates can form that do not contribute to the ionomer film24–26. How this resulting ionomer 
structure can be controlled by ink and process parameters, such as the solvent used, is complex and subject to 
ongoing research30,31. The interactions between Pt/C surface, ionomer and solvent control the self-assembly 
process during ink stage and largely determine the resulting ionomer morphology. The evolution of aion and 
tion with the I:C ratio can be captured by the composition model developed in Ref.78 and allows to discuss the 
impact of basic ink parameters.

To link structure formation during ink stage and proton conductivity in the resulting catalyst layer, in Fig. 7 
multiple cases for the ink parameters kA and t0 that we have studied over an I:C range from 0 to 1.5. The proton 
conductivity predicted by the expression for g+ , using the correction discussed above, is plotted together with 
the literature data from Boyer et al.44, Du et al.87, and Modestov et al.79. The analysis of the ionomer coverage and 
film thickness (Fig 7b), and volumetric composition of the catalyst layer (Fig. 7c) reveals how the microstructure 
evolves over increasing I:C ratio in different scenarios. The dataset from Boyer et al. can be described choosing 
the values kA = 5 and t0 = 8 nm , i.e., the ionomer adsorbs well on the agglomerate surface and the resulting 
film is rather thick (>15 nm at I:C >0.6). Two effects contribute to the high proton conductivity in this case: the 
effective percolation threshold of g is lowered, as ionomer coverage increases sharply at low I:C ratios; and the 
higher film thickness further enhances conductivity, because the proton conductivity increases proportionally 
with ionomer film thickness.

Reducing ionomer dispersion and initial film thickness ( kA = 2 and t0 = 4 nm ) results in a significantly 
impaired proton conductivity, as reported in the dataset of Modestov et al. Sufficient ionomer coverage is estab-
lished only at rather high I:C ratios ( aion > 0.5 at I:C > 0.5 ) and the resulting film thickness is low, < 8 nm for the 
full range of I:C studied. In such a scenario, a major fraction of the ionomer is not dispersed in the ionomer film, 
but forms larger aggregates, which do not contribute to proton conductivity. As only little ionomer is deposited 
as part of the thin film in the secondary pore space, more pore volume remains free (see x2,free in Fig 7c).

In intermediate scenarios as for the dataset of Due et al., in which either kA or t0 is high, or both parameters 
are moderate (e.g., kA = 3 and t0 = 6 nm ), the volumetric compositions of the catalyst layers are quite similar, 
because the ionomer film volume is proportional to the product of aion and tion . However, the proton conductivity 
varies significantly. Here, the case of a stronger ionomer-carbon interaction ( kA = 5 ) and low initial film thick-
ness ( t0 = 4 nm ) results in proton conductivities twice as high as in the opposite case ( kA = 2 and t0 = 8 nm ). 
The gain in proton conductivity from higher ionomer coverage clearly exceeds the gain due to increasing film 
thickness. This implies measures to adjust the ink formulation or interaction of ionomer with the Pt/C catalyst 

Figure 7.   (a) Evolution of proton conductivity over I:C ratio, depending on the ink parameters kA and t0 . (b) 
Ionomer coverage and thickness emerge differently for varying ink parameters. Please note that curves of aion 
calculated from equal values of kA always coincide. (c) Depending on the ink parameters, also the trajectory 
of volumetric composition over I:C ratio, e.g., the volume faction of the pore network or aggregates of excess 
ionomer, is altered.
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that foster a thinner film with higher coverage. Efforts in the experimental literature match these findings, such 
as adjusting solvent composition24,32–34 or doping the carbon support with nitrogen containing groups35,96 to 
achieve a higher dispersion of ionomer.

Conclusion
Polymer electrolyte fuel cells must be designed and optimized to meet the demands of power output and durabil-
ity. The key to achieving this goal lies in the cathode catalyst layer (CCL) and its microstructure. To this end, we 
have reviewed modeling approaches for CCL design. We have identified the crucial gap that available relations 
between composition and proton conductivity in the catalyst layer, such as the Bruggeman relation or percola-
tion theory, neglect specific structural features of the ionomer morphology within the CCL microstructure.

In this work, we have used direct numerical simulations studying the impact of ionomer morphology on pro-
ton conductivity. In the past, image-based pore scale simulations focused on gas and liquid transport, but rarely 
discussed proton conductivity. However, stochastic image generation was found to be a versatile technique to 
study the impact of different ionomer morphologies. Adopting this approach, we have employed virtual structure 
generation to generate synthetic binary images that mimic tomographic data, followed by stochastic reconstruc-
tion of carbon and ionomer phases. Proton conductivity has been simulated over a wide range of structure 
parameters in terms of ionomer coverage and film thickness. Two distinct limiting structural regimes could be 
identified: ionomer can either form a thin film on the catalyst agglomerate surface, where the connectivity of the 
ionomer coverage dominates the observed trends; or the ionomer forms pieces with substantial thickness that 
only partially cover the Pt/C agglomerates but connect across the inter-agglomerate space.

Building on these insights from simulation results, a new analytical relation between ionomer morphology 
and proton conduction was derived from percolation theory. This relation was found to be in close agreement 
with simulation results and it directly links structural metrics of ionomer coverage and thickness with the proton 
conductivity. It can capture both limiting cases and reliably interpolates intermediate morphologies. Trends in 
the literature from multiple sources could be captured. The differences in experimental trends could be linked 
to variations of ionomer morphology.

To provide guidance for purposeful CCL design and fabrication, structure formation during ink stage has 
been addressed using a composition model from a previous work. Ionomer morphology and proton transport 
have been studied over a range of ink parameters, including the I:C ratio, initial ionomer film thickness, and the 
ionomer dispersion parameter. From this analysis, measures to optimize proton conductivity have been derived 
and were found in agreement with current experimental literature.

This work demonstrates how profound quantitative modeling and understanding of the relation between 
CCL microstructure and effective properties can guide the interpretation of experimental data and provide a 
framework for tailored fuel cell design.

Data availability
The authors declare that the results and data to reproduce the methods and results are reported in full in the 
article.
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