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Abstract
In most practical applications, surface roughness is characterized by just one or two parameters (numbers). I show that the 
standard maximum surface height parameters fluctuate strongly between different surface realizations (or measurements), and 
should not be used in the design of engineering components. I show how some roughness parameters depend on the size of 
the roll-off region in the surface roughness power spectra, and introduce a new height parameter which is very reproducible. 
The numerical results presented agree well with experimental observations.
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1  Introduction

The quality of surfaces of solids has become extremely impor-
tant in the design and production of components in particu-
lar in high tech applications. This is particularly true for the 
microgeometry (surface roughness). The most complete infor-
mation about surface roughness is the height probability dis-
tribution Ph and the surface roughness power spectrum C(q) , 
and the surface roughness parameters presented below can be 
obtained from these functions [1–5]. However, in most engi-
neering applications just one or two parameters (numbers) are 
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given to characterize the surface roughness. The most common 
parameters are the arithmetical average Ra and the maximum 
height parameter Rz, both of which can be obtained from a 
single line scan of the height topography [6, 7]. In this com-
munication, I will discuss the relation and usefulness of a few 
of the most common surface roughness parameters. I note that 
very many surface roughness parameters have been defined 
[7], but in my opinion most of them are not very useful.

2 � Some Definitions and Analytical Results

We first define the parameters which will be discussed below. 
We assume that the surface topography is measured over a 
square area A0 = L × L , where L = Na , where a is the lat-
tice constant [see Fig. 1a]. Topography measurements over 
a two-dimensional (2D) area can be performed using optical 
instruments or Atomic Force Microscopy (AFM).

The height coordinate z = h(x) with x = (x, y) is assumed 
given in N × N data points, where typically N ≈ 1000 . The 
studied surface area may be part of the surface of a curved 
body but we assume that the macroscopic curvature is removed 
so that ⟨h⟩ = 0 , where ⟨..⟩ stands for averaging over the surface 
area, i.e.,

The surface arithmetic average roughness amplitude is 
defined by

and the mean square roughness amplitude

⟨f (x)⟩ =
1

A0
∫A0

d2x f (x).

ha = ⟨�h(x)�⟩,

Usually ha and hrms are denoted as Sa and Sq, respec-
tively. For randomly rough surfaces, where the height 
probability distribution Ph is a Gaussian, one have 
hrms = (�∕2)1∕2ha ≈ 1.25ha . The maximum surface height 
hz is the difference between the highest and lowest point on 
the surface A0 , and is often denoted as Sz.

The mean square surface slope

and the total surface area

where A0 is the nominal surface area (the surface area pro-
jected on the xy-plane). Note that as � → 0 we have

The quantities hrms and � can be calculated from the surface 
roughness power spectrum using

For surfaces with randomly roughness with isotropic statisti-
cal properties (see Appendix B in Ref. [8] and Ref. [9, 10]):

where erf(x) is the error function. In the Appendix A we 
give the expression for Atot∕A0 for surfaces with anisotropic 
roughness.

The quantities above involve all the N × N  data points 
on the square area A0 . Engineering stylus instruments usu-
ally measure the topography z = h(x) only along a 1D line 
segment 0 < x < L in N points with L = Na . We assume the 
curvature of the line is removed so that ⟨h(x)⟩ = 0 , where 
⟨f (x)⟩ is defined as the average

For surfaces with isotropic roughness the rms roughness 
amplitude is the same for the 1D line scan and from the 2D 
surface, but the rms slope is a factor of 

√
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Fig. 1   a The surface height z = h(x, y) is given on a square surface 
area A0 = L × L in N × N points. The lattice constant a = L∕N . The 
5 dashed lines (parallel with the x-axis) are uniformly distributed 
along the y-axis. b The height h(x) along one of the dashed lines in 
(a) (Color figure online)
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The maximum surface height in the 1D case is usually 
defined as hmax + hmin [see Fig. 1(b)] averaged over 5 equally 
long segments obtained at different locations on the studied 
surface. We will denote this as h1z but it is often denoted as 
Rz. In the numerical study below we use the 5 well separated 
(in the y-direction) line segments indicated by the dashed 
line segments in Fig. 1a. We also consider a second proce-
dure where we average hmax + hmin over all the N lines in the 
y-direction. We denote this quantity by h∗

1z
.

While the rms roughness amplitude and the rms slope 
are well-defined quantities both in the 1D and 2D cases, this 
is not the case for the maximum surface heights hz and h1z 
which exhibit large fluctuations from one realization of the 
roughness to another (or experimentally from one topog-
raphy measurement to another) [2]. Thus, these quantities 
should not be used in the design of engineering components. 
We will now show that this is the case even in the idealized 
case where there are no surface defects like scratches or 
indentations.

3 � Numerical Results

No two surfaces have the same surface roughness, and hz 
will depend on the surface used. To take this into account 
we have generated surfaces (with linear size L) with differ-
ent random surface roughness but with the same surface 
roughness power spectrum. That is, we use different reali-
zations of the surface roughness but with the same statisti-
cal properties. For each surface size we have generated 60 
rough surfaces using different set of random numbers. The 
surface roughness was generated as described in appendix 
A in Ref. [3] (see also Ref. [11–13]) by adding plane waves 
with random phases �

q
 and with the amplitudes determined 

by the power spectrum:

where B
q
= (2�∕L)[C(q)]1∕2 . We assume isotropic rough-

ness so B
q
 and C(q) only depend on the magnitude of the 

wavevector q.
We have used surfaces of square unit size, L × L , with 7 

different sizes, where L increasing in steps of a factor of 2 
from L = 79 nm to L = 5.06 μm , corresponding to increas-
ing N from N = 256 to N = 16384 . The lattice constant 
a ≈ 0.309 nm . Note that the results does not depend on the 
“lattice constant” which could be any number. For exam-
ple, if we choose a = 1 μm , as is a typical resolution of 
optical instruments, then the largest system size would be 
L = 16.384 mm.

The longest wavelength roughness which can occur 
on a surface with size L is � ≈ L so when producing the 

h(x) =
∑

q

B
q
ei(q⋅x+�q

)

,
roughness on a surface we only include the part of the 
power spectrum between q0 < q < q1 , where q0 = 2�∕L 
and where q1 is a short distance cut-off corresponding to 
atomic dimension (we use q1 = 1.4 × 1010 m−1 ). This is 
illustrated in Fig. 2 which shows the different short wave-
number cut-off q0 used. Figure 3 shows the surface topog-
raphy for the L = 0.63 μm system size without (a) and with 
(b) a roll-off region of nearly one decade in width.

Surfaces of bodies of engineering interest, e.g., a ball 
in a ball bearing or a cylinder in a combustion engine, 
have always a roll-off region for small wavenumbers q, 
because such bodies have some macroscopic shape, but 
are designed to be smooth at length scales smaller that 
the shape of the body. In these cases, the roll-off wave-
length is determined by the machining process, e.g., by the 
size of the particles in sand paper or on a grinding wheel. 
If the roll-off region matters in a particular application 
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Fig. 2   The surface roughness power spectra as a function of the wave 
number (log–log scale) used in the calculations of the surface height 
profile for surfaces with the Hurst exponent H = 1 without (a) and 
with (b) a roll-off region. In (a) we indicate the large and small wave-
number cut-off q1 and q0 , and the (b) also the roll-off wavenumber qr . 
For each system size L = 2�∕q0 the power spectra have been chosen 
so the rms roughness amplitude hrms are the same with and without 
the roll-off region (Color figure online)
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it depends on the size of the relevant or studied surface 
area. Thus, if the lateral size L is small the wavenumber 
q = 2�∕L may be so large that it will fall in the region 
where the surface roughness power spectrum exhibits 
self-affine fractal scaling, and the roll-off region will not 

matter. We note that some natural surfaces, such as sur-
faces produced by brittle fracture, have fractal-like rough-
ness on all length scales up to the linear size of the body.

Figure 4 shows the difference between the highest and 
lowest point on a randomly rough surface, divided by the 
rms roughness amplitude hrms as a function of the logarithm 
of the size L = Na of the unit. Note that the unit has N × N 
height points. If hmax is the height of the highest point in the 
L × L unit, and hmin the lowest point, then hz = hmax + hmin . 
We define h∗

1z
 in a similar way for each scan line, but aver-

aged over all N scan lines, while h1z is defined in a similar 
way as h∗

1z
 but where we average over 5 lines instead of all 

the N lines. Results are shown for a power spectrum with 
roll-off (solid lines) and without roll-off (dashed lines).

The solid and dashed lines in Fig. 4 are averages over all 
the 60 realizations of the rough surfaces. For the smallest 
and largest system sizes the + symbols indicate the results 
for each of the 60 realizations of the surface roughness with 
roll-off. Note the huge fluctuations in hz∕hrms (from 4.27 
to 6.03 for the smallest system size, and 8.54 to 11.02 for 
the biggest size), and even bigger percentage fluctuations in 
h1z∕hrms (from 1.38 to 4.04 for the smallest size, and 4.67 to 
7.84 for the biggest size). However, h∗

1z
∕hrms exhibit much 

smaller fluctuations (from 2.66 to 2.77 for the smallest size, 
and 5.94 to 6.10 for the biggest size).

Figure 5 shows the height ratios hz∕h∗1z (green line) and 
hz∕h1z (blue line) as a function of the logarithm of the size 
L = Na of the unit. The results are again after averaging 
over all the 60 realizations of the rough surfaces. Results are 
shown for a power spectrum with roll-off (solid lines) and 
without roll-off (dashed lines).

Averaging over the 60 realizations of the rough surfaces 
is essentially ensemble averaging. Ensemble averaging 
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Fig. 3   The surface topography for one representation (a) without and 
b with a roll-off region. For the system size L = 0.63 μm where the 
roll-off region in b has nearly one decade in width, qr∕q0 = 8 (Color 
figure online)
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removes the noise in calculated quantities but is in practice 
never used as it would require measuring the topography 
over very many surface areas on the body under study. Still 
it is a very useful concept in theory development where the 
⟨..⟩ averaging introduced in Sec. 2 would stand for ensemble 
averaging rather than integration over the surface area (or 
for both).

4 � Discussion

In the experimental study in Ref. [14], the ratio h1z∕ha (usu-
ally denoted as Rz∕Ra ) was found to be in the range 5.8−9.5 
for ground surfaces and 3.4−7.5 for turned surfaces. Assum-
ing hrms ≈ 1.25ha this gives h1z∕hrms in the range 4.6−7.6 
for ground surfaces and 2.7−6.0 for turned surfaces. This 
difference between the two cases reflects the size of the roll-
off region, which is smallest for the turned surface. These 
results are consistent with what we found in the simulations 
above, where h1z∕hrms is in the range 4.8−7.8 for nearly 2 
decades of roll-off, and 1.4−4.0 without roll-off. In Ref. [14] 
the power spectra were not given but pictures of the rough-
ness clearly showed more long-wavelength surface rough-
ness for the turned surface, which correspond to a smaller 
roll-off region assuming a fixed measurement length L.

In another study (see Ref. [15]) hz∕h1z was in the range 
1.67−2.10 for a milled steel surface, 1.73−1.80 for a polymer 
surface produced by a sintering process, and 1.63−1.69 for 
the surface of a saw spruce wood block. These values are 
very similar to what we found above where on the average 
hz∕h1z is in the range ≈ 1.5 − 2 depending on the width of 
the roll-off region.

In Ref. [15] it was found that hrms and ha as obtained 
from 1D stylus measurements and 2D optical measurements 
where nearly the same as expected from theory as they are 
averages involving all the measured height data points. On 
the other hand the extreme value-forming parameters hz and 
h1z vary greatly and should not be used for design purposes. 
If (reproducible) information about the difference between 
high and low surface points is needed one should instead 
use h∗

1z
 which exhibits much smaller fluctuations from one 

surface realization (or measurement) to another. Since opti-
cal topography data can be obtained rapidly over a square 
surface area it should be easy to obtain h∗

1z
 for most sur-

faces. We note that optical method often cannot accurately 
describe the short wavelength roughness but this should not 
be a problem in the present context because h∗

1z
 is determined 

mainly by the long-wavelength (large amplitude) roughness 
components.

Here, I note that optical topography data often contain 
artifacts and must be used very carefully. Thus surface 
area with large slopes often result in undefined height data 
(sometimes denoted by NaN) which must be filled out by 

interpolation. Sometimes large spikes occur which are arti-
facts of the measurement process or method [16]. Thus 
before using optical topography data for calculating maxi-
mum height parameters ( hz , h1z , and h∗

1z
 ) the data should be 

checked using a graphic software, e.g., gnuplot.
Surface roughness parameters are often used to construct 

topological maps, the most well-known case being the skew-
ness–kurtosis xy-map where measured data approximately 
follow a parabolic-like curve with turning and electric dis-
charge machining typically located on the right half of the 
map, while grinding, milling, and honing are dominantly 
placed on the left side [14, 17]. A similar construction was 
proposed by Czifra and Baranyi who observed that for a 
large body of measured data the change in the surface area 
ΔA = Atot − A0 correlates closely with the rms slope. This 
is not unexpected as for small rms slope the surface area is 
determined by the rms slope [see (2)]. Thus in Fig. 6 we 
show the increase in the surface area ΔA as a function of the 
rms slope � using the full theory [green line, from (3)] and 
using the leading expansion in � [blue line, from (2)]. Also 
shown as + symbols are experimental data from Ref. [14]. It 
is interesting to note that the measured data follow the full-
theory prediction more closely than the asymptotic expan-
sion result [18]. The full theory is based on the assumption 
of randomly rough surfaces which appears to be a good 
approximation in the studied range of rms slope.

Czifra and Baranyi found that surfaces with anisotropic 
roughness (such as turned, ground or milled surfaces) tend 
to occupy the small rms slope part of the � − ΔA map. They 
argued this is due to a small rms average slope of such 
surfaces in one direction, which reduces the total slope. 
However, the surface slope is determined by the roughness 
on all length scales, with the short wavelength roughness 
being particular important, and for surfaces with anisotropic 
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roughness it is not clear that the same strong anisotropy 
occurs on all length scales. Thus, the study in Sec. 5 for a 
grinded aluminum surface shows a slight decrease in the 
anisotropy with increasing wavenumber.

I note here that the surface area depends mainly on the 
rms slope � . Thus even for anisotropic surface roughness 
where the slope in the x-direction (denoted �x ) is different 
from in the y-direction (denoted �y ) the surface roughness 
is to a good approximation given by the case of isotropic 
roughness with the rms slope � = (�2

x
+ �2

y
)1∕2 . Thus for the 

grinded steel surface studied in Sec. 5 we have �x = 0.2637 , 
�y = 0.5950 so that � = 0.6508 . Using (3) this gives 
Atot∕A0 = 1.182 while a calculation for anisotropic rough-
ness (see Sect. 5) gives Atot∕A0 = 1.178 , i.e., only ≈ 0.3% 
less area than predicted for the case of isotropic roughness.

In Ref. [19] I studied the influence of surface roughness 
on press fits. According to DIN 7190 standard the surface 
roughness is included in an empirical way by using the effec-
tive compression

where b = 0.4 , and where we have assumed that only one 
of the surfaces has surface roughness. In Ref. [19] I used 
for h1z the 2D result (here denoted hz ) since I assumed that 
hz ≈ h1z . However, this is not the case but h1z is smaller than 
hz and increases from ≈ 3hrms to 6hrms as the roll-off region 
increases from zero to two decades in length scale. In the 
Discussion section in Ref. [19] I assumed the roll-off region 
to be one decade in length scale and for this case h1z ≈ 4hrms 
giving bh1z ≈ 1.6hrms which is in good agreement with the 
theory predicted in Ref. [19]. Nevertheless, using the empiri-
cal equation (4) is not a good approach because of the large 
fluctuations in h1z between different measurements at differ-
ent places of the same surface. And even if h1z is replaced 
by the more well-defined quantity h∗

1z
 the empirical approach 

is flawed as in reality the roughness correction to the com-
pression depends on the elastic properties of the solids, and 
on the full surface roughness power spectrum rather than a 
single roughness parameter (see Ref. [19]).

The fatigue life of a machined part depends strongly on 
its surface quality. In general, the fatigue strength of engi-
neering components increases with a decrease in the sur-
face roughness. The fatigue life of machined specimen is 
closely related to the stress concentration factor induced by 
surface roughness, and the height parameter h1z and other 
height parameters have been used in empirical expressions 
for stress concentration factor [20]. I suggest that one should 
instead use h∗

1z
 as it is a well-defined quantity. The fact that 

the difference between the highest and lowest point on a 
surface is larger than h∗

1z
 could be taken into account in the 

empirical approach as an (average) enhancement factor 
which depends on the roll-off region in the power spectrum.

(4)�eff = �stylus − bh1z,

We note that different applications will depend on differ-
ent surface roughness parameters. This has been discovered 
only recently from analytical contact mechanics theories 
[21]. Thus assuming only elastic deformations the area of 
real contact depends mainly on the rms slope � . Similarly, 
the leakage of seals is mainly dependent on � in contrast to 
the general assumption that the rms roughness amplitude 
hrms is most important, and often used in design criteria [22]. 
The interfacial contact stiffness K depends mainly on the 
hrms , unless the applied pressure is so high as to result in 
nearly complete contact, or so low as to result in contact 
with just a few of the highest asperities. This latter case 
is referred to as a finite-size (or finite-height) effect [23], 
and in this limit information about the highest asperities 
would be important. But mechanical components operating 
in this limit may exhibit strong fluctuations in their proper-
ties depending on the component used, and such machine 
elements are of little practical interest.

In many cases physical quantities, e.g., the adhesion 
force, will depend on the surface roughness on all length 
scales from the atomic distance to the (macroscopic) size 
of the system. In these cases one must use several measure-
ment methods, e.g., AFM and engineering stylus or optical 
methods to cover all relevant length scales. Combining the 
individual power spectra from each measurement one can 
obtain a power spectrum covering all length scales, from 
which one can calculate many roughness parameters such as 
the rms roughness amplitude hrms and the rms slope � . How-
ever, in most applications the standard surface roughness 
parameters are not enough, but the full surface roughness 
power spectrum C(q) is needed. When calculating power 
spectra it is important not to use any filter, but use the raw 
data from the measurement instrument.

5 � A Case Study: Grinded Aluminum Surface

As an example consider an aluminum surface grinded in one 
direction (see Fig. 7). We have measured the surface topog-
raphy along and orthogonal to the grinding direction (x- and 
y-direction, respectively). The resulting 1D surface rough-
ness power spectra are shown in Fig. 8. Note that while the 
surface has a ∼ 2.5 decades roll-off region in the y-direction, 
there is no clear roll-off region in the x-direction. This is 
consistent with the much larger value for hz∕hrms obtained in 
the y-direction: 7.623 (y-direction) and 4.407 (x-direction).

Why is there no clear roll-off region in the x-direction? 
The grinding is performed by a grinding wheel rotating 
while moving in the x-direction. Hence, an asperity on the 
grinding wheel will only be in contact with the aluminum 
surface for a finite distance which result in a wear track of 
finite (short) length. Thus there will be a distribution of 
length of the wear tracks on the surface depending on the 



Tribology Letters (2023) 71:29	

1 3

Page 7 of 9  29

height of the asperities and on the relative rotation vR and 
translation vx velocities. However, these distances are very 
short and cannot explain the long-wavelength roughness in 
the x-direction.

If the grinding wheel has a radius R which varies very 
slightly in the angular direction, or if the surface of the 
grinding wheel has properties which varies in the angular 
direction, then it will generate “roughness” with wave-
length up to � = 2�Rvx∕vR . In a typical case R = 0.15 m , 
vR = 20 m∕s , and vx = 0.2 m∕s giving � ≈ 1 cm . This will 
generate longer wavelength “roughness” in the x-direction 
than in the y-direction (in the y-direction the longest wave-
length roughness is of order the width of the asperities on 

the grinding wheel). This conclusion is supported by the 
topography picture shown in Fig. 9.

In an earlier study (Ref. [19]) I have shown that a ran-
domly rough surface with a long enough roll-off region 
will have a Gaussian height distribution while the height 
distribution of a surface without a roll-off region in non-
Gaussian and different in each measurement. However, 
if the height distribution is ensemble averaged then also 
for a randomly rough surface with no roll-off the height 
distribution will be Gaussian (see Ref. [19]).

x

y grinded aluminum surface
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Fig. 7   Optical picture of a grinded aluminum surface
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In the present case there is a relative long roll-off 
region in the power spectrum of the grinded aluminum 
surface in the direction orthogonal to the grinding direc-
tion so we expect in this direction a nearly Gaussian 
height distribution as is indeed the case (see the blue 
curve in Fig. 10). However, along the grinding direction 
there is no clear roll-off and we expect a non-Gaussian 
height distribution which is the case (see the red curve 
in Fig. 10).

Including all the roughness components with wavenumbers 
indicated in Fig. 8 gives the rms slope �x = 0.2637 along the 
grinding direction, and �y = 0.5950 orthogonal to the grinding 
direction. Using these rms slopes in (A2) [or (A1)] gives the total 
area Atot = 1.178A0 . It is interesting to compare this area with 
what would be obtained for a surface with isotropic roughness but 
for the same value of the trace of the �ij tensor (which is invariant 
under rotations). For the isotropic roughness the trace is �2 and for 
the anisotropic case �2

x
+ �2

y
 giving � = (�2

x
+ �2

y
)1∕2 ≈ 0.6508 . 

Using this in (3) gives Atot = 1.182A0 which is very close to the 
case of anisotropic roughness.

We have shown that assuming (anisotropic) randomly 
rough surfaces the total surface area can be calculated 
from just two line scans along the principal directions of 
the roughness. Note, however, that the calculated area 
depends on the large wavenumber cut-off q1 and the true 
total area is obtained only when the roughness is studied 
down to atomic distances. The short wavenumber cut-off 
q0 is not very important for the contact area and the rms 
slope, assuming it falls in the roll-off region of the power 
spectrum.

6 � Summary and Conclusions

Many engineering components require strict limits on the 
surface roughness in order to function properly. In most 
practical applications surface roughness is characterized by 
just one or two parameters (numbers). We have shown that 
the maximum surface height parameters used today are not 
well defined but fluctuate strongly when measured on differ-
ent surface areas on the same component or object. Because 
of the random nature of surface roughness, this is the case 
even in the ideal case of no surface defects such as scratches 
or indentations.

Since the standard maximum surface height parameters 
fluctuate strongly between different surface realizations (or 
measurements), they should not be used in the design of 
engineering components. I have shown how to define a sur-
face height parameter which is very reproducible. I have 
discussed how roughness parameters depends on the size 
of the power spectra roll-off region. The theory is in good 
agreement with experimental observations.

Appendix A

The relation (3) between the rms slope � and the total area 
Atot can be easily extended to roughness with anisotropic 
properties with the power spectrum C(q) depending on the 
direction of the wave vector q . We define the tensor

For isotropic roughness where the power spectrum C(q) 
only depends on the magnitude of the wave vector one get 
�ij = (�2∕2)�ij . In general, �ij can be diagonalized and we 
denote the diagonal elements as �2

x
 and �2

y
 which are the 

mean square slopes along the x and y directions. Note that 
the 2D ms slope is �2 = �2

x
+ �2

y
 which is equal to the trace 

of the tensor �ij . Following the procedure in Appendix B of 
Ref. [8] one obtains

Defining x = w2∕(2�x�y) gives

For the case of isotropic roughness where �x = �y = �∕
√

2 
(A1) reduces (3). An alternative form of (A1) is obtained if 
we define y = e−x which gives

which is convenient for numerical calculations.
One limiting case of (A1) is the case of roughness in one 

dimension (1D roughness) corresponding to �x∕�y = 0 (or 
�x∕�y = ∞ ). Using (A1) as �x∕�y → 0 gives

Fig. 11 shows the relative surface area Atot∕A0 as a function 
of the surface rms slope � for randomly rough surfaces with 
isotropic roughness �x∕�y = 1 (green line, from (3)), for ani-
sotropic roughness with �x∕�y = 0.5 (or �x∕�y = 2 ) (red line, 
from (A2)) and for 1D roughness �x∕�y = 0 (or �x∕�y = ∞ ) 

�ij = ∫ d2q qiqjC(q)

Atot

A0

=
1

�x�y ∫
∞

0

dw w(1 + w2)1∕2

×
1

2� ∫
2�

0

d� exp

[

−
1

2

(

cos2�

�2
x

+
sin2�

�2
y

)

w2

]

(A1)

Atot

A0

= ∫
∞

0

dx (1 + 2�x�yx)
1∕2

×
1

2� ∫
2�

0

d� exp

[

−

(

�y

�x
cos2� +

�x

�y
sin2�
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x

]

(A2)

Atot

A0

= ∫
1

0

dy (1 − 2�x�ylny)
1∕2

×
1

2� ∫
2�

0

d� y(�y∕�x−1)cos
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(A3)
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=
1

√
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0

dx
1
√

x
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(blue line, from (A3)). It is remarkable how weakly Atot∕A0 
depends on �x∕�y.
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