001014774 001__ 1014774
001014774 005__ 20240116084319.0
001014774 0247_ $$2doi$$a10.1016/j.softx.2023.101517
001014774 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03458
001014774 0247_ $$2WOS$$aWOS:001075618700001
001014774 037__ $$aFZJ-2023-03458
001014774 082__ $$a004
001014774 1001_ $$00000-0001-6831-3001$$aPolzin, Richard$$b0$$eCorresponding author
001014774 245__ $$aDiagnostic Expert Advisor: A platform for developing machine learning models on medical time-series data
001014774 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
001014774 3367_ $$2DRIVER$$aarticle
001014774 3367_ $$2DataCite$$aOutput Types/Journal article
001014774 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701337979_10180
001014774 3367_ $$2BibTeX$$aARTICLE
001014774 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014774 3367_ $$00$$2EndNote$$aJournal Article
001014774 520__ $$aSetting up data structures, parallelizing code, and creating visualizations are tasks in almost any project aiming to develop healthcare AI solutions based on heterogeneous, high-dimensional data structures. While toolkits for individual parts of this workflow exist, a solution that provides integration of all steps is rarely found. We present the Diagnostic Expert Advisor, a platform for machine learning research on heterogeneous medical time-series data that aims to provide a robust environment for the rapid development of AI applications. It integrates a local web app through which whole patient cohorts, as well as the disease evolution of individual patients, can be analyzed with integrated tools for data handling, visualization, and parallelization. The platform provides sensible defaults while being flexible and extensible to fit various projects and working styles.
001014774 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001014774 536__ $$0G:(BMBF)01ZZ1803M$$aSMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M)$$c01ZZ1803M$$x1
001014774 536__ $$0G:(BMBF)01ZZ1803B$$aBMBF 01ZZ1803B - SMITH - Medizininformatik-Konsortium - Beitrag Universitätsklinikum Aachen (01ZZ1803B)$$c01ZZ1803B$$x2
001014774 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014774 7001_ $$0P:(DE-Juel1)185651$$aFritsch, Sebastian$$b1$$ufzj
001014774 7001_ $$0P:(DE-Juel1)171553$$aSharafutdinov, Konstantin$$b2
001014774 7001_ $$0P:(DE-HGF)0$$aMarx, Gernot$$b3
001014774 7001_ $$0P:(DE-HGF)0$$aSchuppert, Andreas$$b4
001014774 773__ $$0PERI:(DE-600)2819369-6$$a10.1016/j.softx.2023.101517$$gVol. 23, p. 101517 -$$p101517$$tSoftwareX$$v23$$x2352-7110$$y2023
001014774 8564_ $$uhttps://juser.fz-juelich.de/record/1014774/files/Polzin_2023_SoftwareX.pdf$$yOpenAccess
001014774 909CO $$ooai:juser.fz-juelich.de:1014774$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001014774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185651$$aForschungszentrum Jülich$$b1$$kFZJ
001014774 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001014774 9141_ $$y2023
001014774 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
001014774 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014774 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
001014774 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-25
001014774 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014774 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-25
001014774 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFTWAREX : 2022$$d2023-10-26
001014774 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001014774 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001014774 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:51:36Z
001014774 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:51:36Z
001014774 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:51:36Z
001014774 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001014774 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001014774 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001014774 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001014774 920__ $$lyes
001014774 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001014774 980__ $$ajournal
001014774 980__ $$aVDB
001014774 980__ $$aUNRESTRICTED
001014774 980__ $$aI:(DE-Juel1)JSC-20090406
001014774 9801_ $$aFullTexts