001     1014774
005     20240116084319.0
024 7 _ |a 10.1016/j.softx.2023.101517
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03458
|2 datacite_doi
024 7 _ |a WOS:001075618700001
|2 WOS
037 _ _ |a FZJ-2023-03458
082 _ _ |a 004
100 1 _ |a Polzin, Richard
|0 0000-0001-6831-3001
|b 0
|e Corresponding author
245 _ _ |a Diagnostic Expert Advisor: A platform for developing machine learning models on medical time-series data
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701337979_10180
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Setting up data structures, parallelizing code, and creating visualizations are tasks in almost any project aiming to develop healthcare AI solutions based on heterogeneous, high-dimensional data structures. While toolkits for individual parts of this workflow exist, a solution that provides integration of all steps is rarely found. We present the Diagnostic Expert Advisor, a platform for machine learning research on heterogeneous medical time-series data that aims to provide a robust environment for the rapid development of AI applications. It integrates a local web app through which whole patient cohorts, as well as the disease evolution of individual patients, can be analyzed with integrated tools for data handling, visualization, and parallelization. The platform provides sensible defaults while being flexible and extensible to fit various projects and working styles.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M)
|0 G:(BMBF)01ZZ1803M
|c 01ZZ1803M
|x 1
536 _ _ |a BMBF 01ZZ1803B - SMITH - Medizininformatik-Konsortium - Beitrag Universitätsklinikum Aachen (01ZZ1803B)
|0 G:(BMBF)01ZZ1803B
|c 01ZZ1803B
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fritsch, Sebastian
|0 P:(DE-Juel1)185651
|b 1
|u fzj
700 1 _ |a Sharafutdinov, Konstantin
|0 P:(DE-Juel1)171553
|b 2
700 1 _ |a Marx, Gernot
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schuppert, Andreas
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.softx.2023.101517
|g Vol. 23, p. 101517 -
|0 PERI:(DE-600)2819369-6
|p 101517
|t SoftwareX
|v 23
|y 2023
|x 2352-7110
856 4 _ |u https://juser.fz-juelich.de/record/1014774/files/Polzin_2023_SoftwareX.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014774
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185651
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOFTWAREX : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:36Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:36Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:36Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21