001     1014797
005     20240711085632.0
024 7 _ |a 10.1007/s10853-023-08862-0
|2 doi
024 7 _ |a 0022-2461
|2 ISSN
024 7 _ |a 1573-4803
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03472
|2 datacite_doi
024 7 _ |a WOS:001058929700001
|2 WOS
037 _ _ |a FZJ-2023-03472
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Juckel, Martin
|0 P:(DE-Juel1)189092
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Novel air-electrode materials for low-cost inert-supported solid oxide cells: investigation of materials compatibility during co-sintering
260 _ _ |a Dordrecht [u.a.]
|c 2023
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1695113193_7467
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For the investigation of the reactivity of alternative solid oxide cell air electrode materials with forsterite (Mg2SiO4), a magnesium silicate doped with Zn and Ca, five different phase materials were chosen: two Ruddlesden–Popper phase materials: La4Ni3O10 (L4N3) and La3Ni2O7 (L3N2) and three titanium-based perovskite materials: SrTiO3 (STO), SrTi0.75Fe0.25O3 (STF25) and CaTi0.9Fe0.1O3 (CTF). Forsterite was chosen as a support material for the fuel cell, as it is abundant and therefore relatively inexpensive. For the investigation of their reactivity, different types of samples were prepared: mixed pellets, double-layered pellets and screen-printed electrode inks on forsterite green substrates, which were subsequently co-sintered at T = 1300 °C. These samples and their cross sections were then studied using XRD, SEM, EDS and TEM lamella point analysis. Consequently, the impedance spectra were acquired to determine their electro-catalytic performance. The two Ruddlesden–Popper phase materials L4N3 and L3N2 are of high interest due to their thermodynamic stability and high electro-catalytic activity, resulting in a very low polarization resistance. However, this polarization resistance is increased when mixing with forsterite material. In case of the three titanium-based perovskites, the electro-catalytic activity is of less interest due to high polarization resistances.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Grimm, Fabian
|0 P:(DE-Juel1)171661
|b 1
700 1 _ |a Zischke, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)162228
|b 4
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 5
|u fzj
773 _ _ |a 10.1007/s10853-023-08862-0
|g Vol. 58, no. 34, p. 13705 - 13720
|0 PERI:(DE-600)2015305-3
|n 34
|p 13705 - 13720
|t Journal of materials science
|v 58
|y 2023
|x 0022-2461
856 4 _ |u https://juser.fz-juelich.de/record/1014797/files/s10853-023-08862-0.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014797
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)189092
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162228
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER SCI : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21