001014811 001__ 1014811
001014811 005__ 20240313095011.0
001014811 037__ $$aFZJ-2023-03481
001014811 041__ $$aEnglish
001014811 1001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b0$$ufzj
001014811 1112_ $$aConcluding Event of the Human Brain Project$$cJülich$$d2023-09-12 - 2023-09-13$$wGermany
001014811 245__ $$aExploring the diversity of cortical wave activity with a unifying workflow approach
001014811 260__ $$c2023
001014811 3367_ $$033$$2EndNote$$aConference Paper
001014811 3367_ $$2DataCite$$aOther
001014811 3367_ $$2BibTeX$$aINPROCEEDINGS
001014811 3367_ $$2DRIVER$$aconferenceObject
001014811 3367_ $$2ORCID$$aLECTURE_SPEECH
001014811 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1695101919_21354$$xAfter Call
001014811 520__ $$aAlthough brain waves have been studied for a long time, the complex spatial dynamics of such waves became observable only with high-resolution measurement technology. Recent studies of cortical wave activity present various propagation patterns, cortical localization, frequency regimes, and potentially functional roles [e.g. Denker et al. 2018, Davis et al. 2020].Such heterogeneity warrants analysis approaches that enable the combination and comparison of data and results from different sources, facilitating a cumulative understanding of cortical wave activity. We developed an adaptable and reusable workflow approach to combine various data modalities and analysis methods, by combining existing software tools and standards from the EBRAINS environment.We showcase how this approach enables large meta-studies, comparing slow wave activity in anesthetized mice across heterogenous data sources [Gutzen et al. 2022] and the calibration and validation of corresponding network models [Capone et al. 2023]. Further, we demonstrate its extension to new applications, data modalities, and wave types. Specifically, we analyze LFP phase waves in the visual cortex of the macaque monkey in the context of visual perception and the coordination of corresponding saccadic eye movements.In doing so, we illustrate how the adaptable reusability of research software accelerates research, enhances automation, supports collaboration, promotes reproducibility, and enables cross-domain comparisons.
001014811 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001014811 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001014811 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
001014811 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
001014811 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x4
001014811 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x5
001014811 909CO $$ooai:juser.fz-juelich.de:1014811$$pec_fundedresources$$pVDB$$popenaire
001014811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b0$$kFZJ
001014811 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001014811 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001014811 9141_ $$y2023
001014811 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001014811 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001014811 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001014811 980__ $$aconf
001014811 980__ $$aVDB
001014811 980__ $$aI:(DE-Juel1)INM-6-20090406
001014811 980__ $$aI:(DE-Juel1)IAS-6-20130828
001014811 980__ $$aI:(DE-Juel1)INM-10-20170113
001014811 980__ $$aUNRESTRICTED
001014811 981__ $$aI:(DE-Juel1)IAS-6-20130828