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Introduction
* Dual-tasking has been associated with increased fronto-parietal activity [1,2]. » Aim 1: To assess to what extent we can predict dual-task performance from FC
 Functional and structural connectivity (FC and SC) display unique features and SC in individualized task-specific and whole-brain networks (TS-N and
relevant to cognition; however, predictions studies show overall low accuracies [3,4]. WB-N, respectively).
 Accounting for inter-individual variability in macroscopic brain organization may be » Aim 2: To assess to what extent we can classify dual-task performance level
informative for elucidating brain-behavior associations at the individual level [5,6]. from FC and SC in individualized TS-N and WB-N.
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Discussion

 Regression: Higher prediction accuracy with individualized and structural networks; < Are fluctuating functional as well as stable structural brain connectomes overall limited in
especially comparing individualized FC and SC in task-specific networks. explaining large variance of cognitive performance - Granularity mismatch [11]7?

* Functional WB-N outperformed TS-N - relevance of global brain organizational < Findings in line with previous cognitive prediction studies with low accuracies [4,9,10].
properties in brain-behavior associations [9,10]. Especially, functional TS-N is limited in <« Only slight (non-significant) improvement in prediction accuracy when accounting for

explaining variance of dual-task performance (vs. null distribution). inter-individual variability in the brain’s functional organization [5,6].
« Classification: Structural connectome follows similar pattern as with regression; however, < Outlook: Replication with larger sample, further research integrating multi-modal brain
functional non-individualized WB-N appears to outperform TS-N. features and comparing diverse individualization approaches.
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