001014971 001__ 1014971
001014971 005__ 20240502210453.0
001014971 0247_ $$2doi$$a10.1016/j.neuroimage.2023.120345
001014971 0247_ $$2ISSN$$a1053-8119
001014971 0247_ $$2ISSN$$a1095-9572
001014971 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03515
001014971 0247_ $$2pmid$$a37625500
001014971 0247_ $$2WOS$$aWOS:001070643100001
001014971 037__ $$aFZJ-2023-03515
001014971 082__ $$a610
001014971 1001_ $$0P:(DE-Juel1)185951$$aTichelman, Naemi$$b0
001014971 245__ $$aA genetic variation in the adenosine A2A receptor gene contributes to variability in oscillatory alpha power in wake and sleep EEG and A1 adenosine receptor availability in the human brain
001014971 260__ $$aOrlando, Fla.$$bAcademic Press$$c2023
001014971 3367_ $$2DRIVER$$aarticle
001014971 3367_ $$2DataCite$$aOutput Types/Journal article
001014971 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714657803_32500
001014971 3367_ $$2BibTeX$$aARTICLE
001014971 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014971 3367_ $$00$$2EndNote$$aJournal Article
001014971 520__ $$aThe EEG alpha rhythm (∼ 8–13 Hz) is one of the most salient human brain activity rhythms, modulated by the level of attention and vigilance and related to cerebral energy metabolism. Spectral power in the alpha range in wakefulness and sleep strongly varies among individuals based on genetic predisposition. Knowledge about the underlying genes is scarce, yet small studies indicated that the variant rs5751876 of the gene encoding A2A adenosine receptors (ADORA2A) may contribute to the inter-individual variation. The neuromodulator adenosine is directly linked to energy metabolism as product of adenosine tri-phosphate breakdown and acts as a sleep promoting molecule by activating A1 and A2A adenosine receptors. We performed sleep and positron emission tomography studies in 59 healthy carriers of different rs5751876 alleles, and quantified EEG oscillatory alpha power in wakefulness and sleep, as well as A1 adenosine receptor availability with 18F-CPFPX. Oscillatory alpha power was higher in homozygous C-allele carriers (n = 27, 11 females) compared to heterozygous and homozygous carriers of the T-allele (n(C/T) = 23, n(T/T) = 5, 13 females) (F(18,37) = 2.35, p = 0.014, Wilk's Λ = 0.487). Furthermore, a modulatory effect of ADORA2A genotype on A1 adenosine receptor binding potential was found across all considered brain regions (F(18,40) = 2.62, p = 0.006, Wilk's Λ = 0.459), which remained significant for circumscribed occipital region of calcarine fissures after correction for multiple comparisons. In female participants, a correlation between individual differences in oscillatory alpha power and A1 receptor availability was observed. In conclusion, we confirmed that a genetic variant of ADORA2A affects individual alpha power, while a direct modulatory effect via A1 adenosine receptors in females is suggested.
001014971 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001014971 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014971 7001_ $$0P:(DE-Juel1)179271$$aFoerges, Anna L.$$b1
001014971 7001_ $$00000-0003-0336-6705$$aElmenhorst, Eva-Maria$$b2
001014971 7001_ $$0P:(DE-Juel1)165827$$aLange, Denise$$b3
001014971 7001_ $$0P:(DE-HGF)0$$aHennecke, Eva$$b4
001014971 7001_ $$0P:(DE-HGF)0$$aBaur, Diego M.$$b5
001014971 7001_ $$0P:(DE-Juel1)133864$$aBeer, Simone$$b6
001014971 7001_ $$0P:(DE-Juel1)131691$$aKroll, Tina$$b7
001014971 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8
001014971 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b9
001014971 7001_ $$0P:(DE-HGF)0$$aLandolt, Hans-Peter$$b10
001014971 7001_ $$0P:(DE-HGF)0$$aAeschbach, Daniel$$b11
001014971 7001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b12$$eCorresponding author
001014971 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2023.120345$$gVol. 280, p. 120345 -$$p120345 -$$tNeuroImage$$v280$$x1053-8119$$y2023
001014971 8564_ $$uhttps://juser.fz-juelich.de/record/1014971/files/1-s2.0-S1053811923004962-main.pdf$$yOpenAccess
001014971 909CO $$ooai:juser.fz-juelich.de:1014971$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001014971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185951$$aForschungszentrum Jülich$$b0$$kFZJ
001014971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179271$$aForschungszentrum Jülich$$b1$$kFZJ
001014971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133864$$aForschungszentrum Jülich$$b6$$kFZJ
001014971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich$$b7$$kFZJ
001014971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b8$$kFZJ
001014971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b9$$kFZJ
001014971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich$$b12$$kFZJ
001014971 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001014971 9141_ $$y2023
001014971 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014971 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001014971 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z
001014971 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z
001014971 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:47:40Z
001014971 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001014971 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001014971 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2023-10-21
001014971 920__ $$lyes
001014971 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
001014971 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1
001014971 980__ $$ajournal
001014971 980__ $$aVDB
001014971 980__ $$aI:(DE-Juel1)INM-2-20090406
001014971 980__ $$aI:(DE-Juel1)INM-5-20090406
001014971 980__ $$aUNRESTRICTED
001014971 9801_ $$aFullTexts