001     1014971
005     20240502210453.0
024 7 _ |a 10.1016/j.neuroimage.2023.120345
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03515
|2 datacite_doi
024 7 _ |a 37625500
|2 pmid
024 7 _ |a WOS:001070643100001
|2 WOS
037 _ _ |a FZJ-2023-03515
082 _ _ |a 610
100 1 _ |a Tichelman, Naemi
|0 P:(DE-Juel1)185951
|b 0
245 _ _ |a A genetic variation in the adenosine A2A receptor gene contributes to variability in oscillatory alpha power in wake and sleep EEG and A1 adenosine receptor availability in the human brain
260 _ _ |a Orlando, Fla.
|c 2023
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714657803_32500
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The EEG alpha rhythm (∼ 8–13 Hz) is one of the most salient human brain activity rhythms, modulated by the level of attention and vigilance and related to cerebral energy metabolism. Spectral power in the alpha range in wakefulness and sleep strongly varies among individuals based on genetic predisposition. Knowledge about the underlying genes is scarce, yet small studies indicated that the variant rs5751876 of the gene encoding A2A adenosine receptors (ADORA2A) may contribute to the inter-individual variation. The neuromodulator adenosine is directly linked to energy metabolism as product of adenosine tri-phosphate breakdown and acts as a sleep promoting molecule by activating A1 and A2A adenosine receptors. We performed sleep and positron emission tomography studies in 59 healthy carriers of different rs5751876 alleles, and quantified EEG oscillatory alpha power in wakefulness and sleep, as well as A1 adenosine receptor availability with 18F-CPFPX. Oscillatory alpha power was higher in homozygous C-allele carriers (n = 27, 11 females) compared to heterozygous and homozygous carriers of the T-allele (n(C/T) = 23, n(T/T) = 5, 13 females) (F(18,37) = 2.35, p = 0.014, Wilk's Λ = 0.487). Furthermore, a modulatory effect of ADORA2A genotype on A1 adenosine receptor binding potential was found across all considered brain regions (F(18,40) = 2.62, p = 0.006, Wilk's Λ = 0.459), which remained significant for circumscribed occipital region of calcarine fissures after correction for multiple comparisons. In female participants, a correlation between individual differences in oscillatory alpha power and A1 receptor availability was observed. In conclusion, we confirmed that a genetic variant of ADORA2A affects individual alpha power, while a direct modulatory effect via A1 adenosine receptors in females is suggested.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Foerges, Anna L.
|0 P:(DE-Juel1)179271
|b 1
700 1 _ |a Elmenhorst, Eva-Maria
|0 0000-0003-0336-6705
|b 2
700 1 _ |a Lange, Denise
|0 P:(DE-Juel1)165827
|b 3
700 1 _ |a Hennecke, Eva
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Baur, Diego M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Beer, Simone
|0 P:(DE-Juel1)133864
|b 6
700 1 _ |a Kroll, Tina
|0 P:(DE-Juel1)131691
|b 7
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 8
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 9
700 1 _ |a Landolt, Hans-Peter
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Aeschbach, Daniel
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Elmenhorst, David
|0 P:(DE-Juel1)131679
|b 12
|e Corresponding author
773 _ _ |a 10.1016/j.neuroimage.2023.120345
|g Vol. 280, p. 120345 -
|0 PERI:(DE-600)1471418-8
|p 120345 -
|t NeuroImage
|v 280
|y 2023
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/1014971/files/1-s2.0-S1053811923004962-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014971
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)133864
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131691
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131672
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131679
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:47:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:47:40Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:47:40Z
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2022
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21