001014978 001__ 1014978
001014978 005__ 20231023093629.0
001014978 0247_ $$2doi$$a10.1073/pnas.2221595120
001014978 0247_ $$2ISSN$$a0027-8424
001014978 0247_ $$2ISSN$$a1091-6490
001014978 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03522
001014978 0247_ $$2pmid$$a37364116
001014978 0247_ $$2WOS$$aWOS:001041172600005
001014978 037__ $$aFZJ-2023-03522
001014978 082__ $$a500
001014978 1001_ $$00009-0006-1979-3495$$aMacorano, Luis$$b0
001014978 245__ $$aDNA-binding and protein structure of nuclear factors likely acting in genetic information processing in the Paulinella chromatophore
001014978 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2023
001014978 3367_ $$2DRIVER$$aarticle
001014978 3367_ $$2DataCite$$aOutput Types/Journal article
001014978 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1695129852_18928
001014978 3367_ $$2BibTeX$$aARTICLE
001014978 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014978 3367_ $$00$$2EndNote$$aJournal Article
001014978 520__ $$aThe chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.
001014978 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001014978 536__ $$0G:(GEPRIS)289580405$$aSFB 1208 B09 - Erforschung der Kontaktzone zwischen Wirtszelle und ihren neu erworbenen photosynthetischen Organellen in der Amöbe Paulinella chromatophora (Rhizaria, Cercozoa) (B09) (289580405)$$c289580405$$x1
001014978 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014978 7001_ $$00000-0002-4043-4511$$aBinny, Taniya M.$$b1
001014978 7001_ $$00000-0002-6701-7224$$aSpiegl, Tobias$$b2
001014978 7001_ $$00009-0001-1777-1587$$aKlimenko, Victoria$$b3
001014978 7001_ $$0P:(DE-HGF)0$$aSinger, Anna$$b4
001014978 7001_ $$0P:(DE-HGF)0$$aOberleitner, Linda$$b5
001014978 7001_ $$00000-0003-4120-7983$$aApplegate, Violetta$$b6
001014978 7001_ $$0P:(DE-HGF)0$$aSeyffert, Sarah$$b7
001014978 7001_ $$00000-0001-8532-954X$$aStefanski, Anja$$b8
001014978 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b9
001014978 7001_ $$aGertzen, Christoph G. W.$$b10
001014978 7001_ $$0P:(DE-HGF)0$$aHöppner, Astrid$$b11
001014978 7001_ $$00000-0003-0780-9251$$aSmits, Sander H. J.$$b12
001014978 7001_ $$00000-0002-6920-6838$$aNowack, Eva C. M.$$b13$$eCorresponding author
001014978 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2221595120$$gVol. 120, no. 27, p. e2221595120$$n27$$pe2221595120$$tProceedings of the National Academy of Sciences of the United States of America$$v120$$x0027-8424$$y2023
001014978 8564_ $$uhttps://juser.fz-juelich.de/record/1014978/files/pnas.2221595120.pdf$$yOpenAccess
001014978 909CO $$ooai:juser.fz-juelich.de:1014978$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001014978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich$$b9$$kFZJ
001014978 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001014978 9141_ $$y2023
001014978 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
001014978 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-08
001014978 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001014978 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
001014978 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014978 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
001014978 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-26
001014978 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2023-08-26
001014978 920__ $$lyes
001014978 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001014978 980__ $$ajournal
001014978 980__ $$aVDB
001014978 980__ $$aUNRESTRICTED
001014978 980__ $$aI:(DE-Juel1)IBI-7-20200312
001014978 9801_ $$aFullTexts