001     1014991
005     20231027114415.0
024 7 _ |a 10.1093/insilicoplants/diad009
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03527
|2 datacite_doi
024 7 _ |a WOS:001068599000001
|2 WOS
037 _ _ |a FZJ-2023-03527
082 _ _ |a 004
100 1 _ |a Giraud, Mona
|0 P:(DE-Juel1)180766
|b 0
|e Corresponding author
245 _ _ |a CPlantBox: a fully coupled modelling platform for the water and carbon fluxes in the soil–plant–atmosphere continuum
260 _ _ |a [Oxford]
|c 2023
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1695122309_7604
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A plant’s development is strongly linked to the water and carbon flows in the soil–plant–atmosphere continuum. Expected climate shifts will alter the water and carbon cycles and will affect plant phenotypes. Comprehensive models that simulate mechanistically and dynamically the feedback loops between a plant’s three-dimensional development and the water and carbon flows are useful tools to evaluate the sustainability of genotype–environment–management combinations which do not yet exist. In this study, we present the latest version of the open-source three-dimensional Functional–Structural Plant Model CPlantBox with PiafMunch and DuMux coupling. This new implementation can be used to study the interactions between known or hypothetical processes at the plant scale. We simulated semi-mechanistically the development of generic C3 monocots from 10 to 25 days after sowing and undergoing an atmospheric dry spell of 1 week (no precipitation). We compared the results for dry spells starting on different days (Day 11 or 18) against a wetter and colder baseline scenario. Compared with the baseline, the dry spells led to a lower instantaneous water-use efficiency. Moreover, the temperature-induced increased enzymatic activity led to a higher maintenance respiration which diminished the amount of sucrose available for growth. Both of these effects were stronger for the later dry spell compared with the early dry spell. We could thus use CPlantBox to simulate diverging emerging processes (like carbon partitioning) defining the plants’ phenotypic plasticity response to their environment. The model remains to be validated against independent observations of the soil–plant–atmosphere continuum.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Le Gall, Samuel
|0 P:(DE-Juel1)185862
|b 1
|u fzj
700 1 _ |a Harings, Moritz
|0 P:(DE-Juel1)170056
|b 2
|u fzj
700 1 _ |a Javaux, Mathieu
|0 P:(DE-Juel1)129477
|b 3
|u fzj
700 1 _ |a Leitner, Daniel
|0 P:(DE-Juel1)187335
|b 4
|u fzj
700 1 _ |a Meunier, Félicien
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rothfuss, Youri
|0 P:(DE-Juel1)145658
|b 6
|u fzj
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 7
|u fzj
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 8
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 9
|u fzj
700 1 _ |a Lobet, Guillaume
|0 P:(DE-Juel1)171180
|b 10
700 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 11
773 _ _ |a 10.1093/insilicoplants/diad009
|g Vol. 5, no. 2, p. diad009
|0 PERI:(DE-600)3019806-9
|n 2
|p diad009
|t In silico plants
|v 5
|y 2023
|x 2517-5025
856 4 _ |u https://juser.fz-juelich.de/record/1014991/files/Invoice_E16248235.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1014991/files/diad009.pdf
909 C O |o oai:juser.fz-juelich.de:1014991
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185862
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)170056
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)187335
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129425
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)171180
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)157922
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-15T16:13:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-15T16:13:56Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-15T16:13:56Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IN SILICO PLANTS : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21