Home > Publications database > CPlantBox: a fully coupled modelling platform for the water and carbon fluxes in the soil–plant–atmosphere continuum > print |
001 | 1014991 | ||
005 | 20231027114415.0 | ||
024 | 7 | _ | |a 10.1093/insilicoplants/diad009 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-03527 |2 datacite_doi |
024 | 7 | _ | |a WOS:001068599000001 |2 WOS |
037 | _ | _ | |a FZJ-2023-03527 |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Giraud, Mona |0 P:(DE-Juel1)180766 |b 0 |e Corresponding author |
245 | _ | _ | |a CPlantBox: a fully coupled modelling platform for the water and carbon fluxes in the soil–plant–atmosphere continuum |
260 | _ | _ | |a [Oxford] |c 2023 |b Oxford University Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1695122309_7604 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A plant’s development is strongly linked to the water and carbon flows in the soil–plant–atmosphere continuum. Expected climate shifts will alter the water and carbon cycles and will affect plant phenotypes. Comprehensive models that simulate mechanistically and dynamically the feedback loops between a plant’s three-dimensional development and the water and carbon flows are useful tools to evaluate the sustainability of genotype–environment–management combinations which do not yet exist. In this study, we present the latest version of the open-source three-dimensional Functional–Structural Plant Model CPlantBox with PiafMunch and DuMux coupling. This new implementation can be used to study the interactions between known or hypothetical processes at the plant scale. We simulated semi-mechanistically the development of generic C3 monocots from 10 to 25 days after sowing and undergoing an atmospheric dry spell of 1 week (no precipitation). We compared the results for dry spells starting on different days (Day 11 or 18) against a wetter and colder baseline scenario. Compared with the baseline, the dry spells led to a lower instantaneous water-use efficiency. Moreover, the temperature-induced increased enzymatic activity led to a higher maintenance respiration which diminished the amount of sucrose available for growth. Both of these effects were stronger for the later dry spell compared with the early dry spell. We could thus use CPlantBox to simulate diverging emerging processes (like carbon partitioning) defining the plants’ phenotypic plasticity response to their environment. The model remains to be validated against independent observations of the soil–plant–atmosphere continuum. |
536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Le Gall, Samuel |0 P:(DE-Juel1)185862 |b 1 |u fzj |
700 | 1 | _ | |a Harings, Moritz |0 P:(DE-Juel1)170056 |b 2 |u fzj |
700 | 1 | _ | |a Javaux, Mathieu |0 P:(DE-Juel1)129477 |b 3 |u fzj |
700 | 1 | _ | |a Leitner, Daniel |0 P:(DE-Juel1)187335 |b 4 |u fzj |
700 | 1 | _ | |a Meunier, Félicien |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Rothfuss, Youri |0 P:(DE-Juel1)145658 |b 6 |u fzj |
700 | 1 | _ | |a van Dusschoten, Dagmar |0 P:(DE-Juel1)129425 |b 7 |u fzj |
700 | 1 | _ | |a Vanderborght, Jan |0 P:(DE-Juel1)129548 |b 8 |u fzj |
700 | 1 | _ | |a Vereecken, Harry |0 P:(DE-Juel1)129549 |b 9 |u fzj |
700 | 1 | _ | |a Lobet, Guillaume |0 P:(DE-Juel1)171180 |b 10 |
700 | 1 | _ | |a Schnepf, Andrea |0 P:(DE-Juel1)157922 |b 11 |
773 | _ | _ | |a 10.1093/insilicoplants/diad009 |g Vol. 5, no. 2, p. diad009 |0 PERI:(DE-600)3019806-9 |n 2 |p diad009 |t In silico plants |v 5 |y 2023 |x 2517-5025 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1014991/files/Invoice_E16248235.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1014991/files/diad009.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1014991 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180766 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)185862 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)170056 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129477 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)187335 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)145658 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129425 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129548 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)129549 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)171180 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)157922 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-15 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-15T16:13:56Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-15T16:13:56Z |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-15 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-15 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-09-15T16:13:56Z |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IN SILICO PLANTS : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|