001014992 001__ 1014992
001014992 005__ 20230919204905.0
001014992 037__ $$aFZJ-2023-03528
001014992 1001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b0$$ufzj
001014992 1112_ $$aThe 10th international Workshop on Strong Correlations and Angle-Resolved Photoemission Spectroscopy$$cBeijing$$d2023-09-11 - 2023-09-15$$gCORPES$$wPeoples R China
001014992 245__ $$aRecent Progress of theFull-Potential Linearized Augmented Plane-Wave (FLAPW) Method
001014992 260__ $$c2023
001014992 3367_ $$033$$2EndNote$$aConference Paper
001014992 3367_ $$2DataCite$$aOther
001014992 3367_ $$2BibTeX$$aINPROCEEDINGS
001014992 3367_ $$2DRIVER$$aconferenceObject
001014992 3367_ $$2ORCID$$aLECTURE_SPEECH
001014992 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1695114845_7604$$xInvited
001014992 520__ $$aAmong the electronic structure methods for determining the electronic, structural, dynamic, magnetic or transport properties of solids based on density functional theory, the FLAPW method [1], an all-electron method without shape approximation of charge or potential, is recognised as the method whose results are considered the standard for other methods [2, 3]. The precision of the basis set including for the use of GW calculations has been consistently improved using local orbitals. The numerical complexity of the basis is how also a bottleneck for quick developments of new properties. In this talk I present some recent progress in the application of the Kerker-Method to speed-up the self-consistency of the charge-density [4], the hybrid-functionals [5], the optimized effective potential approximation [6] and of the density-functional perturbation theory to calculation the phonon-dispersion [7]. The density functional equations are implemented in the FLEUR code [8,9] and the GW extension is implemented in the SPEX module [10]. I provide some insight in our effort to connect our code to the high-throughput engine AiiDA [11] and make our code exascale ready for the coming European Exascale machine. The work was supported by the European Centre of Excellence MaX ``Materials design at the Exascale'' (Grant No. 824143) funded by the EU.
001014992 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001014992 536__ $$0G:(EU-Grant)824143$$aMaX - MAterials design at the eXascale. European Centre of Excellence in materials modelling, simulations, and design (824143)$$c824143$$fH2020-INFRAEDI-2018-1$$x1
001014992 8564_ $$uhttps://juser.fz-juelich.de/record/1014992/files/Seminar-CSRC_FLAPW_Stefan_Bluegel_abstract.pdf$$yRestricted
001014992 909CO $$ooai:juser.fz-juelich.de:1014992$$popenaire$$pVDB$$pec_fundedresources
001014992 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b0$$kFZJ
001014992 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001014992 9141_ $$y2023
001014992 920__ $$lyes
001014992 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001014992 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001014992 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
001014992 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
001014992 980__ $$aconf
001014992 980__ $$aVDB
001014992 980__ $$aI:(DE-Juel1)PGI-1-20110106
001014992 980__ $$aI:(DE-Juel1)IAS-1-20090406
001014992 980__ $$aI:(DE-82)080012_20140620
001014992 980__ $$aI:(DE-82)080009_20140620
001014992 980__ $$aUNRESTRICTED