001014994 001__ 1014994 001014994 005__ 20230919204906.0 001014994 037__ $$aFZJ-2023-03530 001014994 1001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b0$$ufzj 001014994 1112_ $$aThe 10th international Workshop on Strong Correlations and Angle-Resolved Photoemission Spectroscopy$$cBeijing$$d2023-09-11 - 2023-09-15$$gCORPES$$wPeoples R China 001014994 245__ $$aElectron-Magnon Scattering in Elementary Ferromagnets 001014994 260__ $$c2023 001014994 3367_ $$033$$2EndNote$$aConference Paper 001014994 3367_ $$2DataCite$$aOther 001014994 3367_ $$2BibTeX$$aINPROCEEDINGS 001014994 3367_ $$2DRIVER$$aconferenceObject 001014994 3367_ $$2ORCID$$aLECTURE_SPEECH 001014994 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1695114892_7604$$xInvited 001014994 520__ $$aI report on the combination of two powerful self-energy techniques: the well-known GW method and a self-energy recently developed by us that describes renormalization effects caused by the scattering of electrons with magnons and Stoner excitations. This GT self-energy [1], which is fully k-dependent and contains infinitely many spin-flip ladder diagrams T [2], was shown to have a profound impact on the electronic band structure of Fe, Co, and Ni [3, 4]. In the presentation, I present the refinement of the method by combining GT with the GW self-energy. The resulting GWT spectral functions [5] exhibit strong lifetime effects and emergent dispersion anomalies. They are in an overall better agreement with experimental spectra than those obtained with GW or GT alone, even showing partial improvements over local-spin-density approximation dynamical mean-field theory [3]. According to our analysis, this method provides a basis for applying the GWT technique to a wider class of magnetic materials. By comparing spin- and momentum-resolved photoemission spectroscopy measurements to these many-body calculations we found a surprising kink in the electronic band dispersion of a ferromagnetic material at much deeper binding energies than ever expected (Eb = 1.5 eV). 001014994 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001014994 8564_ $$uhttps://juser.fz-juelich.de/record/1014994/files/Abstract_Bluegel_CORPES2023.pdf$$yRestricted 001014994 909CO $$ooai:juser.fz-juelich.de:1014994$$pVDB 001014994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b0$$kFZJ 001014994 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001014994 9141_ $$y2023 001014994 920__ $$lyes 001014994 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 001014994 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1 001014994 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 001014994 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3 001014994 980__ $$aconf 001014994 980__ $$aVDB 001014994 980__ $$aI:(DE-Juel1)PGI-1-20110106 001014994 980__ $$aI:(DE-Juel1)IAS-1-20090406 001014994 980__ $$aI:(DE-82)080012_20140620 001014994 980__ $$aI:(DE-82)080009_20140620 001014994 980__ $$aUNRESTRICTED