001     1014994
005     20230919204906.0
037 _ _ |a FZJ-2023-03530
100 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 0
|u fzj
111 2 _ |a The 10th international Workshop on Strong Correlations and Angle-Resolved Photoemission Spectroscopy
|g CORPES
|c Beijing
|d 2023-09-11 - 2023-09-15
|w Peoples R China
245 _ _ |a Electron-Magnon Scattering in Elementary Ferromagnets
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1695114892_7604
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a I report on the combination of two powerful self-energy techniques: the well-known GW method and a self-energy recently developed by us that describes renormalization effects caused by the scattering of electrons with magnons and Stoner excitations. This GT self-energy [1], which is fully k-dependent and contains infinitely many spin-flip ladder diagrams T [2], was shown to have a profound impact on the electronic band structure of Fe, Co, and Ni [3, 4]. In the presentation, I present the refinement of the method by combining GT with the GW self-energy. The resulting GWT spectral functions [5] exhibit strong lifetime effects and emergent dispersion anomalies. They are in an overall better agreement with experimental spectra than those obtained with GW or GT alone, even showing partial improvements over local-spin-density approximation dynamical mean-field theory [3]. According to our analysis, this method provides a basis for applying the GWT technique to a wider class of magnetic materials. By comparing spin- and momentum-resolved photoemission spectroscopy measurements to these many-body calculations we found a surprising kink in the electronic band dispersion of a ferromagnetic material at much deeper binding energies than ever expected (Eb = 1.5 eV).
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/1014994/files/Abstract_Bluegel_CORPES2023.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1014994
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21