001015000 001__ 1015000
001015000 005__ 20240116084319.0
001015000 0247_ $$2doi$$a10.1002/hbm.26481
001015000 0247_ $$2ISSN$$a1065-9471
001015000 0247_ $$2ISSN$$a1097-0193
001015000 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03536
001015000 0247_ $$2pmid$$a37713540
001015000 0247_ $$2WOS$$aWOS:001068502700001
001015000 037__ $$aFZJ-2023-03536
001015000 082__ $$a610
001015000 1001_ $$0P:(DE-Juel1)131882$$aSilchenko, Alexander N.$$b0$$eCorresponding author
001015000 245__ $$aImpact of sample size and regression of tissue‐specific signals on effective connectivity within the core default mode network
001015000 260__ $$aNew York, NY$$bWiley-Liss$$c2023
001015000 3367_ $$2DRIVER$$aarticle
001015000 3367_ $$2DataCite$$aOutput Types/Journal article
001015000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702024266_31886
001015000 3367_ $$2BibTeX$$aARTICLE
001015000 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001015000 3367_ $$00$$2EndNote$$aJournal Article
001015000 500__ $$aACKNOWLEDGMENTSThis work was supported by the Forschungzentrum Jülich GmbH (Alexander Silchenko), Simon B. Eickhoff acknowledges funding by the European Union's Horizon 2020 Research and Innovation Program (grant agreements 945539 [HBP SGA3] and 826421 [VBC]), the Deutsche Forschungsgemeinschaft (DFG, SFB 1451 and IRTG 2150) and the National Institute of Health (R01 MH074457). Open Access funding enabled and organized by Projekt DEAL.
001015000 520__ $$aInteractions within brain networks are inherently directional, which are inaccessible to classical functional connectivity estimates from resting-state functional magnetic resonance imaging (fMRI) but can be detected using spectral dynamic causal modeling (DCM). The sample size and unavoidable presence of nuisance signals during fMRI measurement are the two important factors influencing the stability of group estimates of connectivity parameters. However, most recent studies exploring effective connectivity (EC) have been conducted with small sample sizes and minimally pre-processed datasets. We explore the impact of these two factors by analyzing clean resting-state fMRI data from 330 unrelated subjects from the Human Connectome Project database. We demonstrate that both the stability of the model selection procedures and the inference of connectivity parameters are highly dependent on the sample size. The minimum sample size required for stable DCM is approximately 50, which may explain the variability of the DCM results reported so far. We reveal a stable pattern of EC within the core default mode network computed for large sample sizes and demonstrate that the use of subject-specific thresholded whole-brain masks for tissue-specific signals regression enhances the detection of weak connections.
001015000 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001015000 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001015000 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b1
001015000 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b2
001015000 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.26481$$gp. hbm.26481$$n17$$p5858-5870$$tHuman brain mapping$$v44$$x1065-9471$$y2023
001015000 8564_ $$uhttps://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.pdf$$yOpenAccess
001015000 8564_ $$uhttps://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.gif?subformat=icon$$xicon$$yOpenAccess
001015000 8564_ $$uhttps://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001015000 8564_ $$uhttps://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001015000 8564_ $$uhttps://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001015000 8767_ $$8W-2023-00568-b$$92023-11-16$$d2023-10-09$$eAPC$$jZahlung erfolgt$$zWiley OA 3520 Reporting/ Rechnung 2816!!
001015000 8767_ $$d2023-10-09$$eAPC$$jZahlung angewiesen$$zKostensstelle erfragt
001015000 909CO $$ooai:juser.fz-juelich.de:1015000$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001015000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131882$$aForschungszentrum Jülich$$b0$$kFZJ
001015000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b1$$kFZJ
001015000 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131684$$a HHU Düsseldorf$$b1
001015000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b2$$kFZJ
001015000 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b2
001015000 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001015000 9141_ $$y2023
001015000 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001015000 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001015000 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001015000 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-22
001015000 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001015000 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-22$$wger
001015000 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:46:01Z
001015000 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-27T20:46:01Z
001015000 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001015000 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-22
001015000 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001015000 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-22
001015000 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
001015000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-27T20:46:01Z
001015000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2022$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001015000 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001015000 920__ $$lyes
001015000 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001015000 980__ $$ajournal
001015000 980__ $$aVDB
001015000 980__ $$aUNRESTRICTED
001015000 980__ $$aI:(DE-Juel1)INM-7-20090406
001015000 980__ $$aAPC
001015000 9801_ $$aAPC
001015000 9801_ $$aFullTexts