001     1015000
005     20240116084319.0
024 7 _ |a 10.1002/hbm.26481
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03536
|2 datacite_doi
024 7 _ |a 37713540
|2 pmid
024 7 _ |a WOS:001068502700001
|2 WOS
037 _ _ |a FZJ-2023-03536
082 _ _ |a 610
100 1 _ |a Silchenko, Alexander N.
|0 P:(DE-Juel1)131882
|b 0
|e Corresponding author
245 _ _ |a Impact of sample size and regression of tissue‐specific signals on effective connectivity within the core default mode network
260 _ _ |a New York, NY
|c 2023
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702024266_31886
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ACKNOWLEDGMENTSThis work was supported by the Forschungzentrum Jülich GmbH (Alexander Silchenko), Simon B. Eickhoff acknowledges funding by the European Union's Horizon 2020 Research and Innovation Program (grant agreements 945539 [HBP SGA3] and 826421 [VBC]), the Deutsche Forschungsgemeinschaft (DFG, SFB 1451 and IRTG 2150) and the National Institute of Health (R01 MH074457). Open Access funding enabled and organized by Projekt DEAL.
520 _ _ |a Interactions within brain networks are inherently directional, which are inaccessible to classical functional connectivity estimates from resting-state functional magnetic resonance imaging (fMRI) but can be detected using spectral dynamic causal modeling (DCM). The sample size and unavoidable presence of nuisance signals during fMRI measurement are the two important factors influencing the stability of group estimates of connectivity parameters. However, most recent studies exploring effective connectivity (EC) have been conducted with small sample sizes and minimally pre-processed datasets. We explore the impact of these two factors by analyzing clean resting-state fMRI data from 330 unrelated subjects from the Human Connectome Project database. We demonstrate that both the stability of the model selection procedures and the inference of connectivity parameters are highly dependent on the sample size. The minimum sample size required for stable DCM is approximately 50, which may explain the variability of the DCM results reported so far. We reveal a stable pattern of EC within the core default mode network computed for large sample sizes and demonstrate that the use of subject-specific thresholded whole-brain masks for tissue-specific signals regression enhances the detection of weak connections.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 1
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 2
773 _ _ |a 10.1002/hbm.26481
|g p. hbm.26481
|0 PERI:(DE-600)1492703-2
|n 17
|p 5858-5870
|t Human brain mapping
|v 44
|y 2023
|x 1065-9471
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1015000/files/Human%20Brain%20Mapping%20-%202023%20-%20Silchenko%20-%20Impact%20of%20sample%20size%20and%20regression%20of%20tissue%E2%80%90specific%20signals%20on%20effective.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1015000
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131684
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:46:01Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-22
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21