001015016 001__ 1015016
001015016 005__ 20250204113734.0
001015016 0247_ $$2doi$$a10.1109/TITS.2023.3312519
001015016 0247_ $$2ISSN$$a1524-9050
001015016 0247_ $$2ISSN$$a1558-0016
001015016 0247_ $$2WOS$$aWOS:001071986100001
001015016 037__ $$aFZJ-2023-03544
001015016 082__ $$a620
001015016 1001_ $$00000-0002-8095-9267$$aHuang, Zhongyi$$b0
001015016 245__ $$aA Matrix Translation Model for Evacuation Path Optimization
001015016 260__ $$aNew York, NY$$bInst. of Electrical and Electronics Engineers$$c2024
001015016 3367_ $$2DRIVER$$aarticle
001015016 3367_ $$2DataCite$$aOutput Types/Journal article
001015016 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707889082_21599
001015016 3367_ $$2BibTeX$$aARTICLE
001015016 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001015016 3367_ $$00$$2EndNote$$aJournal Article
001015016 520__ $$aIn order to make the optimization of evacuationefficient enough for application, a Matrix Translation Model(MTM) has been developed. In MTM, a building is representedby using a network and the matrices attached to the network,and the crowd movement is simulated by translating matricesalong the network. The performance of MTM was evaluated bycomparison with a widely used commercial evacuation simulator,Pathfinder. The results showed that with accurate reproduction ofthe evacuation processes, MTM ran 10-15 times and 29-37 timesfaster than Pathfinder’s flow-based (SFPE) and agent-based(Steering) modes, respectively. Furthermore, an evacuation pathoptimization method based on MTM is proposed by balancing theuse of different exits. When run on a laptop, the path optimizationof a building with 21 rooms and 944 occupants took less than3 s. The optimized path was verified by Pathfinder, showing thatapproximately 50 s of the evacuation time was saved. MTMprovides a new framework for evacuation simulation, i.e., thenetwork defines the path connection, the matrix represents thespatial state, the macroscopic rules drive the matrix translation,and the microscopic rules limit the element transfer betweenthe matrices. The path optimization algorithm developed basedon the new framework offers new possibilities for real-timeevacuation optimization of large buildings.
001015016 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001015016 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001015016 7001_ $$00000-0001-7368-1183$$aFang, Zhiming$$b1
001015016 7001_ $$0P:(DE-HGF)0$$aYe, Rui$$b2
001015016 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b3$$eCorresponding author$$ufzj
001015016 773__ $$0PERI:(DE-600)2034300-0$$a10.1109/TITS.2023.3312519$$gp. 1 - 10$$n2$$p1374 - 1383$$tIEEE transactions on intelligent transportation systems$$v25$$x1524-9050$$y2024
001015016 8564_ $$uhttps://juser.fz-juelich.de/record/1015016/files/A_Matrix_Translation_Model_for_Evacuation_Path_Optimization-1.pdf
001015016 8564_ $$uhttps://juser.fz-juelich.de/record/1015016/files/A_Matrix_Translation_Model_for_Evacuation_Path_Optimization-1.gif?subformat=icon$$xicon
001015016 8564_ $$uhttps://juser.fz-juelich.de/record/1015016/files/A_Matrix_Translation_Model_for_Evacuation_Path_Optimization-1.jpg?subformat=icon-1440$$xicon-1440
001015016 8564_ $$uhttps://juser.fz-juelich.de/record/1015016/files/A_Matrix_Translation_Model_for_Evacuation_Path_Optimization-1.jpg?subformat=icon-180$$xicon-180
001015016 8564_ $$uhttps://juser.fz-juelich.de/record/1015016/files/A_Matrix_Translation_Model_for_Evacuation_Path_Optimization-1.jpg?subformat=icon-640$$xicon-640
001015016 8564_ $$uhttps://juser.fz-juelich.de/record/1015016/files/A_Matrix_Translation_Model_for_Evacuation_Path_Optimization.pdf$$yRestricted
001015016 909CO $$ooai:juser.fz-juelich.de:1015016$$pVDB
001015016 9101_ $$0I:(DE-HGF)0$$60000-0002-8095-9267$$aExternal Institute$$b0$$kExtern
001015016 9101_ $$0I:(DE-HGF)0$$60000-0001-7368-1183$$aExternal Institute$$b1$$kExtern
001015016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b3$$kFZJ
001015016 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001015016 9141_ $$y2024
001015016 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
001015016 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
001015016 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T INTELL TRANSP : 2022$$d2024-12-18
001015016 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001015016 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001015016 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001015016 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-18
001015016 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001015016 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T INTELL TRANSP : 2022$$d2024-12-18
001015016 920__ $$lyes
001015016 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001015016 980__ $$ajournal
001015016 980__ $$aVDB
001015016 980__ $$aI:(DE-Juel1)IAS-7-20180321
001015016 980__ $$aUNRESTRICTED