001015150 001__ 1015150
001015150 005__ 20231124114431.0
001015150 0247_ $$2doi$$a10.1016/j.firesaf.2023.103926
001015150 0247_ $$2ISSN$$a0378-7761
001015150 0247_ $$2ISSN$$a0379-7112
001015150 0247_ $$2ISSN$$a1873-7226
001015150 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03555
001015150 0247_ $$2WOS$$aWOS:001078382000001
001015150 037__ $$aFZJ-2023-03555
001015150 082__ $$a690
001015150 1001_ $$0P:(DE-Juel1)174283$$aHehnen, Tristan$$b0
001015150 245__ $$aPMMA pyrolysis simulation – from micro- to real-scale
001015150 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001015150 3367_ $$2DRIVER$$aarticle
001015150 3367_ $$2DataCite$$aOutput Types/Journal article
001015150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1695217899_6187
001015150 3367_ $$2BibTeX$$aARTICLE
001015150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001015150 3367_ $$00$$2EndNote$$aJournal Article
001015150 520__ $$aIn fire spread simulations, heat transfer and pyrolysis are processes to describe the thermal degradation of solid material. In general, the necessary material parameters cannot be directly measured. They are implicitly deduced from micro- and bench-scale experiments, i.e. thermogravimetric analysis (TGA), micro-combustion (MCC) and cone calorimetry. Using a complex fire model, an inverse modelling process (IMP) is capable to find parameter sets, which are able to reproduce the experimental results. In the real-scale, however, difficulties arise predicting the fire behaviour using the deduced parameter sets. Here, we show an improved model to fit data of multiple small scale experiment types. Primarily, a gas mixture is used to model an average heat of combustion for the surrogate fuel. The pyrolysis scheme is using multiple reactions to match the mass loss (TGA), as well as the energy release (MCC). Additionally, a radiative heat flux map, based on higher resolution simulations, is used in the cone calorimeter setup. With this method, polymethylmetacrylate (PMMA) micro-scale data can be reproduced well. For the bench-scale, IMP setups are used differing in cell size and targets, which all lead to similar and good results. Yet, they show significantly different performance in the real-scale parallel panel setup.
001015150 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001015150 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001015150 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b1$$eCorresponding author
001015150 773__ $$0PERI:(DE-600)1483569-1$$a10.1016/j.firesaf.2023.103926$$gVol. 141, p. 103926 -$$p103926 -$$tFire safety journal$$v141$$x0378-7761$$y2023
001015150 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S0379711223001947
001015150 8564_ $$uhttps://juser.fz-juelich.de/record/1015150/files/1-s2.0-S0379711223001947-main-2.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
001015150 8767_ $$d2023-10-20$$eHybrid-OA$$jZahlung angewiesen$$zKostenstelle erfragt
001015150 909CO $$ooai:juser.fz-juelich.de:1015150$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001015150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b1$$kFZJ
001015150 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001015150 9141_ $$y2023
001015150 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001015150 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001015150 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001015150 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001015150 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001015150 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001015150 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFIRE SAFETY J : 2022$$d2023-10-21
001015150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001015150 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001015150 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001015150 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001015150 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001015150 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001015150 920__ $$lyes
001015150 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001015150 9801_ $$aFullTexts
001015150 980__ $$ajournal
001015150 980__ $$aVDB
001015150 980__ $$aUNRESTRICTED
001015150 980__ $$aI:(DE-Juel1)IAS-7-20180321
001015150 980__ $$aAPC