001015150 001__ 1015150 001015150 005__ 20231124114431.0 001015150 0247_ $$2doi$$a10.1016/j.firesaf.2023.103926 001015150 0247_ $$2ISSN$$a0378-7761 001015150 0247_ $$2ISSN$$a0379-7112 001015150 0247_ $$2ISSN$$a1873-7226 001015150 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03555 001015150 0247_ $$2WOS$$aWOS:001078382000001 001015150 037__ $$aFZJ-2023-03555 001015150 082__ $$a690 001015150 1001_ $$0P:(DE-Juel1)174283$$aHehnen, Tristan$$b0 001015150 245__ $$aPMMA pyrolysis simulation – from micro- to real-scale 001015150 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023 001015150 3367_ $$2DRIVER$$aarticle 001015150 3367_ $$2DataCite$$aOutput Types/Journal article 001015150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1695217899_6187 001015150 3367_ $$2BibTeX$$aARTICLE 001015150 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001015150 3367_ $$00$$2EndNote$$aJournal Article 001015150 520__ $$aIn fire spread simulations, heat transfer and pyrolysis are processes to describe the thermal degradation of solid material. In general, the necessary material parameters cannot be directly measured. They are implicitly deduced from micro- and bench-scale experiments, i.e. thermogravimetric analysis (TGA), micro-combustion (MCC) and cone calorimetry. Using a complex fire model, an inverse modelling process (IMP) is capable to find parameter sets, which are able to reproduce the experimental results. In the real-scale, however, difficulties arise predicting the fire behaviour using the deduced parameter sets. Here, we show an improved model to fit data of multiple small scale experiment types. Primarily, a gas mixture is used to model an average heat of combustion for the surrogate fuel. The pyrolysis scheme is using multiple reactions to match the mass loss (TGA), as well as the energy release (MCC). Additionally, a radiative heat flux map, based on higher resolution simulations, is used in the cone calorimeter setup. With this method, polymethylmetacrylate (PMMA) micro-scale data can be reproduced well. For the bench-scale, IMP setups are used differing in cell size and targets, which all lead to similar and good results. Yet, they show significantly different performance in the real-scale parallel panel setup. 001015150 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001015150 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001015150 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b1$$eCorresponding author 001015150 773__ $$0PERI:(DE-600)1483569-1$$a10.1016/j.firesaf.2023.103926$$gVol. 141, p. 103926 -$$p103926 -$$tFire safety journal$$v141$$x0378-7761$$y2023 001015150 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S0379711223001947 001015150 8564_ $$uhttps://juser.fz-juelich.de/record/1015150/files/1-s2.0-S0379711223001947-main-2.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 001015150 8767_ $$d2023-10-20$$eHybrid-OA$$jZahlung angewiesen$$zKostenstelle erfragt 001015150 909CO $$ooai:juser.fz-juelich.de:1015150$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire 001015150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b1$$kFZJ 001015150 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001015150 9141_ $$y2023 001015150 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001015150 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001015150 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 001015150 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 001015150 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 001015150 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21 001015150 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFIRE SAFETY J : 2022$$d2023-10-21 001015150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 001015150 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21 001015150 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21 001015150 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21 001015150 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001015150 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001015150 920__ $$lyes 001015150 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0 001015150 9801_ $$aFullTexts 001015150 980__ $$ajournal 001015150 980__ $$aVDB 001015150 980__ $$aUNRESTRICTED 001015150 980__ $$aI:(DE-Juel1)IAS-7-20180321 001015150 980__ $$aAPC