001015187 001__ 1015187 001015187 005__ 20231027114415.0 001015187 0247_ $$2doi$$a10.1063/5.0155545 001015187 0247_ $$2ISSN$$a0021-9606 001015187 0247_ $$2ISSN$$a1520-9032 001015187 0247_ $$2ISSN$$a1089-7690 001015187 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03583 001015187 0247_ $$2pmid$$a37318177 001015187 0247_ $$2WOS$$aWOS:001011041000001 001015187 037__ $$aFZJ-2023-03583 001015187 082__ $$a530 001015187 1001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b0$$eCorresponding author$$ufzj 001015187 245__ $$aIce breakloose friction 001015187 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2023 001015187 3367_ $$2DRIVER$$aarticle 001015187 3367_ $$2DataCite$$aOutput Types/Journal article 001015187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1695970951_3792 001015187 3367_ $$2BibTeX$$aARTICLE 001015187 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001015187 3367_ $$00$$2EndNote$$aJournal Article 001015187 520__ $$aWe discuss the origin of the breakloose (or static) friction force when an ice block is slid on a hard randomly rough substrate surface. Ifthe substrate has roughness with small enough amplitude (of order a 1 nm or less), the breakloose force may be due to interfacial slip andis determined by the elastic energy per unit area, Uel/A0, stored at the interface after the block has been displaced a short distance from itsoriginal position. The theory assumes complete contact between the solids at the interface and that there is no elastic deformation energyat the interface in the original state before the application of the tangential force. The breakloose force depends on the surface roughnesspower spectrum of the substrate and is found to be in good agreement with experimental observations. We show that as the temperaturedecreases, there is a transition from interfacial sliding (mode II crack propagation, where the crack propagation energy GII = Uel/A0) toopening crack propagation (mode I crack propagation with GI the energy per unit area to break the ice–substrate bonds in the normaldirection). 001015187 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001015187 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001015187 7001_ $$0P:(DE-HGF)0$$aTyrode, E. C.$$b1 001015187 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0155545$$gVol. 158, no. 23, p. 234701$$n23$$p234701$$tThe journal of chemical physics$$v158$$x0021-9606$$y2023 001015187 8564_ $$uhttps://juser.fz-juelich.de/record/1015187/files/234701_1_5.0155545.pdf$$yOpenAccess 001015187 8767_ $$d2023-09-22$$eHybrid-OA$$jPublish and Read 001015187 909CO $$ooai:juser.fz-juelich.de:1015187$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire 001015187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b0$$kFZJ 001015187 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-114 28 Stockholm, Sweden$$b1 001015187 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001015187 9141_ $$y2023 001015187 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001015187 915pc $$0PC:(DE-HGF)0102$$2APC$$aTIB: AIP Publishing 2021 001015187 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25 001015187 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001015187 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25 001015187 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001015187 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger 001015187 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2022$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21 001015187 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21 001015187 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 001015187 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1 001015187 980__ $$ajournal 001015187 980__ $$aVDB 001015187 980__ $$aUNRESTRICTED 001015187 980__ $$aI:(DE-Juel1)PGI-1-20110106 001015187 980__ $$aI:(DE-Juel1)IAS-1-20090406 001015187 980__ $$aAPC 001015187 9801_ $$aAPC 001015187 9801_ $$aFullTexts