001015190 001__ 1015190
001015190 005__ 20240313095016.0
001015190 037__ $$aFZJ-2023-03586
001015190 041__ $$aEnglish
001015190 1001_ $$0P:(DE-Juel1)192414$$aKrauße, Sven$$b0$$eCorresponding author$$ufzj
001015190 1112_ $$aBernstein Conference 2023$$cBerlin$$d2023-09-26 - 2023-09-30$$gbernstein2023$$wGermany
001015190 245__ $$aRelating the orientation of cortical traveling waves and co-occurring spike patterns
001015190 260__ $$c2023
001015190 3367_ $$033$$2EndNote$$aConference Paper
001015190 3367_ $$2BibTeX$$aINPROCEEDINGS
001015190 3367_ $$2DRIVER$$aconferenceObject
001015190 3367_ $$2ORCID$$aCONFERENCE_POSTER
001015190 3367_ $$2DataCite$$aOutput Types/Conference Poster
001015190 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1695637486_30429$$xAfter Call
001015190 520__ $$aThe collective population dynamics of the cerebral cortex can be studied at different levels. One option is to study individual neurons' collective correlated spiking activity. A complementary approach on the mesoscopic scale is to analyze the local field potential (LFP) as an aggregate signature of the neuronal population activity. However, the exact relation between these two observation levels remains an open research question.The LFP activity in the motor cortex exhibits functionally relevant oscillations in the beta frequency band (e.g., [1]). It has been shown that the phases of beta oscillations typically form traveling waves [2]. While different spatial patterns of such waves are identified [3], the most common are planar waves that travel across the primary motor cortex, predominantly along the rostral-caudal axis [2].There are several indications of spatio-temporal organization of motor cortex activity in different signal types. Repeating patterns of precise synchronous spiking (on a ms scale) identified in the motor cortex [4] also display a preferred spatial orientation [5]. Correlated spiking activity measured by functional connectivity occurs in the same direction as the average propagation axis of LFP waves [6]. In more local recordings, it was found that the spiking activity phase locks to beta LFP oscillations. The phase locking is even more pronounced for spikes involved in significant synchronous spiking as identified by Unitary Events [7].To investigate the direct relation of synchronous spike patterns to beta LFP phase waves, we analyze multi-electrode array (Utah array) recordings of the motor cortex (M1/PMd) from a macaque monkey during an instructed reach-to-grasp task [8]. We analyze the LFP In the beta band (15-30 Hz) for wave directions and their planarity based on the gradient of the instantaneous phase using an automated analysis pipeline approach (Cobrawap) [9,10]. Independently, we detect repeating synchronous spike patterns in the same data sets using the SPADE method [11, 12]. We show that the average pattern orientation axis tends to be perpendicular to the propagation direction of simultaneously occurring planar waves, as suggested by previous work [5,6]. Moreover, this relation is observed pattern-by-pattern, most prominently during movement preparation. These findings provide direct evidence of how spatially organized oscillatory LFP activity can be interpreted in the context of precisely coordinated spike patterns.References:[1] Kilavik et al. (2012). doi:10.1093/cercor/bhr299[2] Rubino et al. (2006). doi:10.1038/nn1802[3] Denker et al. (2018). doi:10.1038/s41598-018-22990-7[4] Riehle et al. (1997). doi:10.1126/science.278.5345.1950[5] Torre et al. (2016). doi:10.1523/JNEUROSCI.4375-15.2016[6] Takahashi et al. (2015). doi:10.1038/ncomms8169[7] Denker (2011). doi:10.1093/cercor/bhr040[8] Brochier et al. (2018). doi:10.1038/sdata.2018.55[9] Gutzen et al. (2022). doi:10.48550/arXiv.2211.08527 RRID:SCR_022966[10] Capone et al. (2022). doi:10.48550/arXiv.2104.07445[11] Torre et al. (2013). doi:10.3389/fncom.2013.00132[12] Stella et al. (2022). doi:10.1523/ENEURO.0505-21.2022Acknowledgments:Funded by EU Grant 785907 (HBP SGA2), EU Grant 945539 (HBP SGA3), ANR Grant GRASP (France), Helmholtz IVF Grant ZT-I-0003 (HAF), the Joint-Lab “Supercomputing and Modeling for the Human Brain”, and the Ministry of Culture and Science of the State of North Rhine-Westphalia, Germany (NRW-network 'iBehave', grant number: NW21-049).
001015190 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001015190 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001015190 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001015190 536__ $$0G:(DE-Juel-1)iBehave-20220812$$aAlgorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)$$ciBehave-20220812$$x3
001015190 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
001015190 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x5
001015190 7001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b1$$ufzj
001015190 7001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b2$$ufzj
001015190 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b3
001015190 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b4$$ufzj
001015190 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b5$$ufzj
001015190 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b6$$ufzj
001015190 909CO $$ooai:juser.fz-juelich.de:1015190$$pec_fundedresources$$pVDB$$popenaire
001015190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192414$$aForschungszentrum Jülich$$b0$$kFZJ
001015190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b1$$kFZJ
001015190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b2$$kFZJ
001015190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b4$$kFZJ
001015190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b5$$kFZJ
001015190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b6$$kFZJ
001015190 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001015190 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001015190 9141_ $$y2023
001015190 920__ $$lyes
001015190 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001015190 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001015190 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001015190 980__ $$aposter
001015190 980__ $$aVDB
001015190 980__ $$aI:(DE-Juel1)INM-6-20090406
001015190 980__ $$aI:(DE-Juel1)IAS-6-20130828
001015190 980__ $$aI:(DE-Juel1)INM-10-20170113
001015190 980__ $$aUNRESTRICTED
001015190 981__ $$aI:(DE-Juel1)IAS-6-20130828