001     1015190
005     20240313095016.0
037 _ _ |a FZJ-2023-03586
041 _ _ |a English
100 1 _ |a Krauße, Sven
|0 P:(DE-Juel1)192414
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Bernstein Conference 2023
|g bernstein2023
|c Berlin
|d 2023-09-26 - 2023-09-30
|w Germany
245 _ _ |a Relating the orientation of cortical traveling waves and co-occurring spike patterns
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1695637486_30429
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The collective population dynamics of the cerebral cortex can be studied at different levels. One option is to study individual neurons' collective correlated spiking activity. A complementary approach on the mesoscopic scale is to analyze the local field potential (LFP) as an aggregate signature of the neuronal population activity. However, the exact relation between these two observation levels remains an open research question.The LFP activity in the motor cortex exhibits functionally relevant oscillations in the beta frequency band (e.g., [1]). It has been shown that the phases of beta oscillations typically form traveling waves [2]. While different spatial patterns of such waves are identified [3], the most common are planar waves that travel across the primary motor cortex, predominantly along the rostral-caudal axis [2].There are several indications of spatio-temporal organization of motor cortex activity in different signal types. Repeating patterns of precise synchronous spiking (on a ms scale) identified in the motor cortex [4] also display a preferred spatial orientation [5]. Correlated spiking activity measured by functional connectivity occurs in the same direction as the average propagation axis of LFP waves [6]. In more local recordings, it was found that the spiking activity phase locks to beta LFP oscillations. The phase locking is even more pronounced for spikes involved in significant synchronous spiking as identified by Unitary Events [7].To investigate the direct relation of synchronous spike patterns to beta LFP phase waves, we analyze multi-electrode array (Utah array) recordings of the motor cortex (M1/PMd) from a macaque monkey during an instructed reach-to-grasp task [8]. We analyze the LFP In the beta band (15-30 Hz) for wave directions and their planarity based on the gradient of the instantaneous phase using an automated analysis pipeline approach (Cobrawap) [9,10]. Independently, we detect repeating synchronous spike patterns in the same data sets using the SPADE method [11, 12]. We show that the average pattern orientation axis tends to be perpendicular to the propagation direction of simultaneously occurring planar waves, as suggested by previous work [5,6]. Moreover, this relation is observed pattern-by-pattern, most prominently during movement preparation. These findings provide direct evidence of how spatially organized oscillatory LFP activity can be interpreted in the context of precisely coordinated spike patterns.References:[1] Kilavik et al. (2012). doi:10.1093/cercor/bhr299[2] Rubino et al. (2006). doi:10.1038/nn1802[3] Denker et al. (2018). doi:10.1038/s41598-018-22990-7[4] Riehle et al. (1997). doi:10.1126/science.278.5345.1950[5] Torre et al. (2016). doi:10.1523/JNEUROSCI.4375-15.2016[6] Takahashi et al. (2015). doi:10.1038/ncomms8169[7] Denker (2011). doi:10.1093/cercor/bhr040[8] Brochier et al. (2018). doi:10.1038/sdata.2018.55[9] Gutzen et al. (2022). doi:10.48550/arXiv.2211.08527 RRID:SCR_022966[10] Capone et al. (2022). doi:10.48550/arXiv.2104.07445[11] Torre et al. (2013). doi:10.3389/fncom.2013.00132[12] Stella et al. (2022). doi:10.1523/ENEURO.0505-21.2022Acknowledgments:Funded by EU Grant 785907 (HBP SGA2), EU Grant 945539 (HBP SGA3), ANR Grant GRASP (France), Helmholtz IVF Grant ZT-I-0003 (HAF), the Joint-Lab “Supercomputing and Modeling for the Human Brain”, and the Ministry of Culture and Science of the State of North Rhine-Westphalia, Germany (NRW-network 'iBehave', grant number: NW21-049).
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 2
536 _ _ |a Algorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)
|0 G:(DE-Juel-1)iBehave-20220812
|c iBehave-20220812
|x 3
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 4
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 5
700 1 _ |a Gutzen, Robin
|0 P:(DE-Juel1)171572
|b 1
|u fzj
700 1 _ |a Stella, Alessandra
|0 P:(DE-Juel1)171932
|b 2
|u fzj
700 1 _ |a Brochier, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riehle, Alexa
|0 P:(DE-Juel1)172858
|b 4
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 5
|u fzj
700 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:1015190
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192414
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172858
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144807
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 1
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21