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ABSTRACT
We present a hydrodynamic theory describing pair diffusion in systems with periodic boundary conditions, thereby generalizing earlier work
on self-diffusion [B. Dünweg and K. Kremer, J. Chem. Phys. 99, 6983–6997 (1993) and I.-C. Yeh and G. Hummer, J. Phys. Chem. B 108,
15873–15879 (2004)]. Its predictions are compared with Molecular Dynamics simulations for a liquid carbonate electrolyte and two ionic
liquids, for which we characterize the correlated motion between distinct ions. Overall, we observe good agreement between theory and
simulation data, highlighting that hydrodynamic interactions universally dictate ion correlations. However, when summing over all ion pairs
in the system to obtain the cross-contributions to the total cationic or anionic conductivity, the hydrodynamic interactions between ions with
like and unlike charges largely cancel. Consequently, significant conductivity contributions only arise from deviations from a hydrodynamic
flow field of an ideal fluid, which is from the local electrolyte structure as well as the relaxation processes in the subdiffusive regime. In the
case of ionic liquids, the momentum-conservation constraint additionally is vital, which we study by employing different ionic masses in the
simulations. Our formalism will likely also be helpful to estimate finite-size effects of the conductivity or of Maxwell-Stefan diffusivities in
simulations.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147339

I. INTRODUCTION
Due to the increasing demand for renewable energies, sub-

stantial efforts are currently being made to develop novel elec-
trolytes for energy storage devices.1,2 For contemporary lithium-ion
batteries, liquid carbonate-based electrolytes remain important as
well-established materials that can deliberately be fine-tuned via
additives.1,2 On the other hand, ionic liquids (ILs) are a more novel
class of materials that are promising for, e.g., supercapacitors, as
they are solely composed of cations and anions and hence have high
charge densities.3,4

With respect to the application of these materials as electrolytes,
the ionic conductivity

σ = σ+ + σ− , (1)

containing contributions from both cations (σ+) and anions (σ−),
as well as the transference numbers

t± =
σ±

σ+ + σ−
, (2)

of cations and anions, respectively, are key design parameters. Most
generally, experimental measurements of σ± and t± can be achieved
by electrophoretic nuclear magnetic resonance (eNMR)5–10 or com-
bined techniques with additional assumptions.11–13 For polymer
electrolytes, the well-established Bruce-Vincent method is another
viable option.11,14

On the other hand, σ± and t± can readily be calculated from
Molecular Dynamics (MD) simulations, given sufficient sampling.
In particular, the linear-response conductivity can be extracted from
equilibrium MD simulations as follows:15–17

σ = lim
Δt→∞

e2

6V Δt kBT

N

∑
i=1

N

∑
j=1

ziz j ⟨Δri Δr j⟩. (3)

Here, zi and zj are the valencies of ions i and j contained in volume
V , e is the elementary charge, kBT is the thermal energy, and Δri and
Δrj are the displacement vectors of ions i and j during lag time Δt. If
well-defined and long-lived ion pairs of cations and anions existed,
it is obvious that the net conductivity would be reduced by their
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FIG. 1. Schematic illustration of the distance and displacement vectors used in
this study. Motional correlations of two different ions are expressed by the average
scalar product between their displacement vectors Δri and Δrj in dependence on
their initial distance r .

presence, as such pairs would contribute to the mass transport (and
thus to the diffusion coefficients D±), but not to the charge trans-
port measured by σ. Such a reduction is indeed seen from Eq. (3) for
cation–anion pairs that move cooperatively into a certain direction
due to the fact that ⟨Δri Δrj⟩ > 0 in this case, which diminishes σ
(see the sketch in Fig. 1). However, the picture of distinct ion pairs is
generally an oversimplification: First, larger ion clusters might form
in an electrolyte,18–22 and second, ion pairs or clusters are tempo-
ral in nature, i.e., they continuously disintegrate and reform.18,19,22,23

Nonetheless, distinct ions move correlated (or anticorrelated) in any
non-ideal electrolyte with finite concentration, which consequently
affects the value of σ.

To study these ionic correlations in an electrolyte with
monovalent ions (z± = ±1) in more detail, we define

σ++ = lim
Δt→∞

e2

6V Δt kBT

N+
∑
i=1

N+
∑
j=1
⟨Δri Δr j⟩, (4a)

σ+− = lim
Δt→∞

−e2

6V Δt kBT

N+
∑
i=1

N−
∑
j=1
⟨Δri Δr j⟩, (4b)

σ−− = lim
Δt→∞

e2

6V Δt kBT

N−
∑
i=1

N−
∑
j=1
⟨Δri Δr j⟩, (4c)

with N+ and N− being the numbers of cations and anions, respec-
tively, and N+ +N− = N as well as N+ = N− due to electroneutrality.
In this way, Eq. (3) may be decomposed into individual contri-
butions arising from the collective motion of cations and cations,
anions and anions, as well as cations and anions12,13 (the former
two additionally containing the self-diffusion of the respective ion
species),

σ = σ++ + 2σ+− + σ−−. (5)

With the additional definitions

σ+ = σ++ + σ+−, (6a)

and
σ− = σ+− + σ−−. (6b)

Equation (1) is recovered.
In addition, these general definitions valid for any electrolyte,

ILs by definition lack a neutral solvent, such that the system only
consists of cations and anions. This has the important consequence
that in periodic systems, momentum conservation affects the charge

transport because there are no solvent molecules that can exchange
momentum with the ions. Although this was already shown in
early analytical calculations on molten salts,24,25 Kashyap et al. more
recently confirmed the same mechanism for ILs via both analytical
calculations and MD simulations.26 A similar impact of momentum
conservation on the ionic cross-correlations has been observed for
other quasi-binary mixtures.9,27 In particular, because the center of
mass of the system is at rest,

m+
N+
∑
i=1

Δri +m−
N−
∑
i=1

Δri = 0 , (7)

where m± are the masses of cations and anions, respectively. Mul-
tiplying this expression by ∑N+

j=1Δr j (or ∑N−
j=1Δr j) and taking the

average yields

m+
N+
∑
i=1

N+
∑
j=1
⟨ΔriΔr j⟩ +m−

N−
∑
i=1

N+
∑
j=1
⟨ΔriΔr j⟩ = 0. (8)

Inserting all possible combinations of the expressions in Eq. (4)
into Eq. (8), using the short-hand notations from Eqs. (5) and (6),
accounting for the valencies zi and zj in Eq. (3) and rearranging we
arrive at

σ++
σ+−
=

m−
m+

, (9a)

σ−−
σ+−
=

m+
m−

, (9b)

σ++
σ−−
=

m2
−

m2
+

, (9c)

σ+
σ−
=

m−
m+

. (9d)

A particularly interesting implication pointed out by Kashyap et al.26

is that σ+− > 0, which mathematically arises from the fact that
σ++ > 0 and σ−− > 0 due to the dominant self-diffusion terms. This
is in clear contrast to what is typically found for electrolytes includ-
ing a solvent, in which the cooperative motion of cations and anions
reduces σ, that is σ+− < 0. Because in an IL, the motion of any ion
has to be compensated by the motion of all other ions, on a global
scale, cations and anions (but also ions with equal charges) move
anticorrelated, i.e., in opposite directions,26 such that ⟨Δri Δr j⟩+−
< 0, resulting in σ+− > 0 due to zizj = −1.

Nonetheless, one would intuitively expect that locally, neigh-
boring ions with opposite charges move correlated. Via a distance-
resolved analysis of the σXY in Eq. (5) (with X and Y denoting the two
ion species “+” and “−”), Tu et al.28 showed that in ILs, neighboring
ions indeed move correlated, whereas the dominating anticorrelated
motion emerges only for larger interionic separations. Interestingly,
also equally charged ions displayed locally correlated dynamics.28

Furthermore, Tu et al. demonstrated that qualitatively, the same
features are also found for conventional aqueous electrolytes,29,30

although σ+− < 0 as naively expected. In a recent paper, we could
also confirm the correlated motion between lithium ions and their
anionic solvation shell in IL/Li-salt mixtures with varying salt
fractions.22

In the present contribution, we aim to understand the distance
dependence of the σXY in more detail. To this end, we derive an
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analytical framework to capture the distance dependence of σXY
based on a hydrodynamic theory that has originally been devel-
oped to calculate finite-size effects of the self-diffusion in periodic
systems.31–35 These theoretical predictions are then compared with
the MD simulation data for a liquid carbonate electrolyte (CE) and
an IL. The remainder of this paper is organized as follows: In Sec. II,
we describe the technical aspects of the MD simulations, whereas
in Sec. III, we develop our hydrodynamic framework for pair diffu-
sion in periodic systems and compare it with the distance-dependent
ion correlations extracted from the MD data. We then study the
time dependence of these ionic correlations in light of our theory
in Sec. IV. Finally, in Sec. V, we conclude and give an outlook on
how our framework could contribute to related topics.

II. SIMULATION DETAILS
The MD simulations have been performed with the simula-

tion code Lucretius developed at the University of Utah using the
APPLE & P polarizable force field.36,37 For the CE, we reused MD
trajectories from an earlier study,17 which is an equimolar mixture
of ethylene carbonate (EC) and dimethyl carbonate (DMC) with
1 mol/l lithium bis(trifluoromethane)sulfonimide (LiTFSI). In addi-
tion, we simulated two ILs, namely 1-ethyl-3-methylimidazolium
TFSI ([EMIm][TFSI]) and EMIm tetrafluoroborate ([EMIm][BF4]).
For the sake of clarity, only the data for [EMIm][TFSI] are shown
in the main text, whereas the corresponding data for [EMIm][BF4]
is given in the Appendix. The ILs contained 256 ion pairs inside
a cubic simulation box. In addition to the systems with standard
masses, comparative simulations with artificially modified masses
have been performed to assess the impact of momentum conser-
vation on transport properties. For this purpose, the cation masses
were scaled by a factor of 1/

√
2, whereas the anion masses have been

increased by a factor
√

2.
The systems were equilibrated for 5 ns in the NpT ensem-

ble, followed by subsequent production runs of 100 ns in the
NVT ensemble at 298 K, resulting in box lengths of 47.7589 and
40.5430 Å for [EMIm][TFSI] and [EMIm][BF4], respectively. Both
the temperature and the pressure of the system were maintained
by a Nosé-Hoover chain thermostat (coupling frequency 0.01 fs−1)
and barostat (coupling frequency 0.0005 fs−1),38 whereas periodic
boundary conditions were applied in all dimensions. Electrostatic
interactions have been treated by the Ewald summation technique
with a cutoff radius of 12 Å, an inverse Gaussian charge width of
0.23 Å−1, and 7 × 7 × 7 vectors for the reciprocal space. Lennard-
Jones interactions have been truncated at 12 Å, beyond which a
continuum-model dispersion correction was applied. All bonds were
constrained by the SHAKE algorithm.39,40 A multiple time-step inte-
gration scheme41,42 was used to integrate the equations of motion,
where a time step of 0.5 fs has been used for bonds and angles.
For torsions and non-bonded interactions up to a distance of 7 Å,
a time step of 1.5 fs was used, and finally, for non-bonded interac-
tions between atoms separated more than 7 Å and the reciprocal
part of the Ewald summation, a time step of 3 fs was used. The
induced dipoles were determined iteratively where the correspond-
ing dipole–dipole interactions were scaled to zero by a tapering
function between 11 and 12 Å. The pressure tensor was dumped
every 0.9 ps to calculate the viscosity (Sec. IV A and Appendix C).

The CE from the previous study17 was simulated in an NpT
ensemble, for which the unwrapping of the ions’ coordinates from
the primary simulation box into real space can be problematic.43,44

In the present work, we observed a similar effect for pair diffusion.
Therefore, the algorithm described in Ref. 43 was employed.

III. HYDRODYNAMIC THEORY
A. Distance dependence of ionic correlations

We start by characterizing the distance dependence of the ionic
correlations ⟨Δri Δrj⟩ in Eqs. (3) and (4). To this end, we define
the dynamical correlation between two distinct ions as a function
of their initial separation r:

ρXY(r) = ⟨Δri Δr j ∣ri j(0) = r⟩XY , (10)

where X and Y denote the ion species as above. The index at the
⟨. . .⟩XY bracket indicates that the average is taken for a given pair
type. In addition, only ion pairs with a given initial separation
rij(0) = r are averaged, as indicated by the conditional expression
in Eq. (10).

The individual ρXY are shown in Fig. 2(a) for the CE with
Δt = 30 ps and Fig. 2(b) for the IL with Δt = 100 ps. Here, the Δt-
values have been chosen such that the dynamics is still subdiffusive
to avoid that the distance between the ions changes too much during
Δt, which would blur the ρXY -curves in Fig. 2. However, the behav-
ior for larger Δt up to a few nanoseconds is qualitatively the same,
which we analyze below in Sec. IV. From Fig. 2, we observe that the
curves of all pair types display a peak with ρXY > 0 at short initial
separations (i.e., at about 5–10 Å), demonstrating that locally, all ion
pairs move correlated. Similar observations have been made previ-
ously by Tu et al.28,29 The short-range peak for the cation–anion
correlation is larger than the respective peaks of ρ

++
and ρ

−−
and

shifted to shorter distances. This observation can be rationalized by
the local ordering, i.e., the nearest-neighbor shell of a cation is essen-
tially composed of anions and vice versa,17,23,45,46 resulting in peak
positions of ρ

+−
shifted to shorter r and showing a larger magni-

tude. In the case of the IL, all ρXY show a decay superimposed with
minor oscillations at intermediate distances, presumably related to
its long-ranged ordering.23,45,46 At large separations, all ρXY become
increasingly negative for both systems, although the curves vary
only slowly with r, demonstrating that the ions move anticorrelated,
which is in agreement with the findings of Tu et al.28,29

In previous studies,26,28 the anticorrelated motion has (at least
partly) been attributed to the momentum conservation constraint.
That is because locally all ion types move correlated, momentum
conservation can only be realized by a compensating counterflux of
ions at larger length scales. However, from Fig. 2(a), we observe anti-
correlated motion at large r also for the CE, in line with previous
results for an aqueous electrolyte.26 In fact, the qualitative shape of
all ρXY in Fig. 2 is remarkably similar for larger r, pointing toward
a universal feature. Empirically, we find that the decay of ρXY scales
as 1/r, which is indicative of hydrodynamic interactions.32–34,47 As
the 1/r-scaling is theoretically expected even when neglecting iner-
tial forces,47 the incompressibility of the medium must play an
important role, too. Indeed, early analytical descriptions of the ionic
conductivity assumed the existence of a hydrodynamic flow field
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FIG. 2. (a) and (b): Distance-
dependent correlation ρXY(r)
= ⟨Δri Δr j ∣ri j(0) = r⟩XY between
ion pair types X and Y in dependence of
their initial distance r . (c) and (d): Devi-
ations of the simulation data from the
hydrodynamic fit (ΔρXY = ρXY − ρPBC,
solid curves) in comparison with the
scaled and shifted RDFs (dashed
curves). Several curves in (c) and (d)
have been shifted for better visibility.
The uncertainties are in the range of the
line thickness.

around a given central ion.48–51 Furthermore, the hydrodynamic pic-
ture is also in line with our recent findings for IL/Li-salt blends,
where we observed that a given anion still moves cooperatively with
a nearby lithium ion even after disengaging from its coordination
shell.22 In the following, we therefore provide a theoretical basis for
the observations in Figs. 2(a) and 2(b).

B. Pair diffusion in periodic systems
1. Two derivations of the pair diffusion tensor

Starting from Eq. (3), we define the diffusion tensor with the
elements,32,35

D βγ
i j = lim

Δt→∞

⟨Δrβ
i Δrγ

j⟩

6Δt
, (11)

describing the pair diffusion of ions i and j, where β and γ denote the
spatial compounds of Δri and Δrj, respectively. For i = j in isotropic
systems, the trace of this expression reduces to the well-known
Einstein relation:

Di = lim
Δt→∞

⟨Δr2
i ⟩

6Δt
. (12)

Rather than focusing on explicit pairs of ions, one may define the
diffusion tensor as a function of the interionic separation r = rj − ri

for i ≠ j,32,35 similar in spirit to Eq. (10):

Di j = D(r j − ri). (13)

For an infinite system, the diffusion tensor is given to first order (i.e.,
within the approximation of point particles valid for large r) by the
so-called Oseen tensor,47

D∞(r) =
kBT
8πηr

(1 + r̂r̂), (14)

that describes the hydrodynamic interactions in a fluid with vis-
cosity η. For a cubic periodic system with box length L, analogous
expressions were derived,32,34 which we sketch in the following.

a. Green-Kubo relation. Dünweg32 expressed Eq. (13) via the
Green-Kubo relation

Di j(r) = ∫
∞

0
dt ⟨u(0, 0)u(r, t)⟩, (15)

where u(r, t) is the flow field in a continuous representation. From a
set of discrete particles with positions {ri}, the latter can be obtained
via u(r, t) = (V/N)∑N

i=1 viδ(r − ri), with {vi} being the particles’
velocities. Due to periodicity, u(r, t) can be expressed by its Fourier
modes, i.e.,

u(r, t) =∑
k

ũk(t) exp (ik ⋅ r)

ũk(t) =
1
N

N

∑
i=1

vi(t) exp (−ik ⋅ ri),
(16)

where k = 2πn/L is a reciprocal lattice vector with n = (nxnynz)
T

and nx, ny, and nz ∈ Z. The diffusion tensor in the case of
uncorrelated modes then reads32

DPBC(r) =∑
k≠0
(1 − k̂k̂) exp (ik ⋅ r)∫

∞

0
dt ⟨ũk(0)ũk(t)⟩, (17)
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[note that (1 − k̂k̂) projects on the transversal modes relevant for
an incompressible system and “PBC” stands for “periodic boundary
conditions”]. The zeroth mode is excluded, as it describes the net
motion of the entire system.32,34 Dünweg evaluated the Green-Kubo
integral on the right-hand side of Eq. (17) via the Mori-Zwanzig
formalism, yielding32,35

∫

∞

0
dt ⟨ũk(0)ũk(t)⟩ =

(kBT)2

k2V2
∫
∞

0 dt ⟨Pβγ(0)Pβγ(t)⟩
, (18)

where the

Pβγ(t) =
1
V

M

∑
i=1

miviβ(t)viγ(t) + Fiβ(t)riγ(t), (19)

are the off-diagonal elements of the pressure tensor (β ≠ γ), mi is
the mass, viβ is the velocity, Fiβ is the force, and riβ is the position
of particle i in the β-direction, respectively. Note that M in Eq. (19)
denotes the total number of particles/atoms as opposed to the num-
ber of ions N and hence may also include a solvent. The integral in
the denominator of Eq. (18) is nothing else than the Green-Kubo
relation for the viscosity,34,52

η =
V

kBT∫
∞

0
dt⟨Pβγ(0)Pβγ(t)⟩, (20)

such that Eq. (17) becomes

DPBC(r) =
kBT
Vη∑k≠0

(1 − k̂k̂) exp (ik ⋅ r)
k2 . (21)

b. Stokes equation. An alternative route to Eq. (21) is via the
Stokes equation,

η∇2u(r) = ∇p(r) − (δ(r) −
1
V
)F, (22)

as shown by Yeh and Hummer,34 where p is the pressure and F is
a perturbative force acting on a point-like particle. The term 1/V
ensures that the net force acting on the periodic cell is zero, leading
to the exclusion of the zeroth mode (see above). For an incom-
pressible fluid with ∇u = 0, the divergence of Eq. (22) simplifies
to

∇
2p(r) = F ⋅ ∇(δ(r) −

1
V
). (23)

Equations (22) and (23) can be transformed into the Fourier space
via Eq. (16) and p(r, t) = ∑kp̃k(t) exp (ik ⋅ r), giving

−ηk2ũk = ikp̃k − (1 + δk)F, (24)

and

−k2p̃k = i(1 − δk)k ⋅ F. (25)

Eliminating p̃k, rearranging, summing over all modes and using
u = (kBT)−1 DPBC ⋅ F results in Eq. (21) as well.

2. Trace of the diffusion tensor
Assuming that the relative orientation of the displacement vec-

tors Δri and Δrj is statistically independent from that of r, we may
take the trace of the tensors in Eqs. (14) and (21) to yield

D∞(r) =
kBT
6πηr

, (26)

for infinite systems and

DPBC(r) =
kBT
6πη

1
V∑k≠0

4π
k2 exp (ik ⋅ r), (27)

for periodic systems. Thus, for an infinite system, we recover the
Oseen-like decay32–34 proportional to 1/r, whereas in a periodic
system, a more intricate distance dependence is found.

3. Ewald summation
Due to the fact that the summation in Eq. (27) is ill-convergent,

one usually applies the Ewald summation technique,33–35,53 in which
an additional convergence factor exp(−k2

/(4α2
)) and a short-

ranged compensating real-space summation is introduced to the
summands in Eq. (27),34,53 resulting in

DPBC(r) =
kBT
6πη
[

1
V∑k≠0

4π
k2 exp (ik ⋅ r) exp(−

k2

4α2 )

+∑
n

erfc(α∣r + nL∣)
∣r + nL∣

−
π

Vα2 ]. (28)

The finite-size correction ΔDFSC(r) = DPBC(r) −D∞(r) for the
comparison between periodic and the infinite systems can then be
written as

ΔDFSC(r) = DPBC −D∞ =
kBT
6πη
[

1
V∑k≠0

4π
k2 exp (ik ⋅ r) exp(−

k2

4α2 )

+∑
n≠0

erfc(α∣r + nL∣)
∣r + nL∣

−
erf(α r)

r
−

π
Vα2 ], (29)

which may be numerically evaluated. In the limit r → 0, we recover
the expression

ΔDFSC(r → 0) = −
kBT
6πη

ξ(r → 0)
L

, (30)

as already derived by Dünweg33 and Yeh and Hummer,34 where
ξ(r → 0) ≈ 2.837 297 is a constant. Equation (30) is frequently
used to calculate the finite-size correction for diffusion coefficients
obtained from MD simulation data. Similar expressions have been
derived for non-cubic box geometries.54,55

Equation (29) may also be converted into its dimensionless
form via the dimensionless distance vector r/L and dimensionless
convergence parameter αL,
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ΔDFSC(r/L) =
kBT

6πηL
[∑

n≠0

1
πn2 exp (2πi n ⋅ (r/L)) exp(−

π2n2

(αL)2 )

+ ∑
n≠0

erfc((αL)∣(r/L) + n∣)
∣(r/L) + n∣

−
erf((αL)(r/L))

r/L
−

π
(αL)2 ]

= −
kBT
6πη

ξ(r/L)
L

, (31)

from which the overall scaling proportional to L−1 becomes
apparent.

To calculate pair diffusion coefficients expected for the indi-
vidual terms in Eq. (3) in a periodic MD system, we use DPBC
= D∞ + ΔDFSC for finite r, for which Eq. (31) yields

DPBC(r/L) =
kBT

6πηL
[

L
r
− ξ(r/L)]. (32)

Finally, Eq. (11) can be used to convert DPBC(r) to ρPBC(r) as defined
in Eq. (10):

ρPBC(r/L) =
kBTΔt

πηL
[

L
r
− ξ(r/L)]. (33)

The numerically evaluated curve for ξ(r/L) is shown in Fig. 6 in
Appendix A. We observe that ξ(r/L) slightly decays from its ini-
tial value to ξ ≈ 2 for the largest possible distance in the box, i.e.,
r/L =

√
3/2. Note that diffusive dynamics has implicitly been

assumed in Eq. (33), which we discuss further in Sec. IV.

C. Flow field of the pair diffusion tensor
Rather than taking the trace in Eqs. (26) and (27), we evalu-

ated the flow field generated by the diffusion tensor in Eq. (21) in
a first step. Due to the ill-converging behavior of the expression in
Eq. (21), we used the Ewald summation in analogy to the deriva-
tion of Eq. (28) but retaining the orientational dependence. To this
end, the real-space summands [i.e., the second, third and fourth term
on the right-hand side of Eq. (29) as well as the expression from
Eq. (14)] were weighted by the tensor product (Δr̂0 + (r̂ ⋅ Δr̂0)r̂),
whereas the Fourier term [first term on the right-hand side of
Eq. (29)] was scaled by (Δr̂0 − (k̂ ⋅ Δr̂0)k̂) [cf. tensorial products in
Eqs. (14) and (21); see Appendix A for details]. Here, Δr0 is the dis-
placement vector of a point particle in the center of the box, and the
hats denote the unit vectors. Unit values and unit vectors have been
employed for the numerical evaluation of the flow field.

Figure 3 shows this normalized flow field in the x, y-plane for
different Δr0. As already indicated by Fig. 2, we observe a locally
aligned flow and a global counterflux in Figs. 3(a) and 3(c) when Δr0
is oriented parallel to the x-axis. Interestingly, when Δr0 acts along
the diagonal, vortices appear at large distances from the center in
Figs. 3(b) and 3(d). Qualitatively, the flow field in Figs. 3(c) and 3(d)
is similar than for the case when Δr0 lies in the x, y-plane [Figs. 3(a)
and 3(b)].

D. Comparison with molecular dynamics
simulation data

Next, we return to the averaged pair diffusion expressed by
Eq. (33), whose predictions are shown in Figs. 2(a) and 2(b) as gray-
dashed curves. Note that at this stage, the viscosity entering the

FIG. 3. Normalized flow field generated
by the diffusion tensor in Eq. (21) pro-
jected onto the x, y-plane for different
displacement vectors Δr0 of a point par-
ticle in the center of the box. The ori-
entation of the resulting Δr vector field
is shown as arrows, and its relative
magnitude marked by the color-coding.
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prefactor of Eq. (33) has been treated as an empirical fit parameter
(see Sec. IV A for a detailed discussion of the role of η). Moreover, a
single fit curve only has been determined based on the average of all
three MD data curves for a given electrolyte in Fig. 2 (i.e., ρ

++
, ρ
+−

,
and ρ

−−
). We note an excellent agreement for all pair types for inter-

mediate and large separations (r ≳ 10 Å), underscoring the universal
behavior of the pair diffusion for these distances. Obviously, devia-
tions at short r due to the finite size of the ions and their chemical
structure, as well as the oscillating deviations for the IL at somewhat
larger distances, are not captured by the analytical prediction due to
the assumption of point particles in our theory. Interestingly, similar
deviations from ideal behavior have been found for simple hard-
sphere fluids,56 which have been rationalized by an effective diffusive
motion of the particles on a free energy landscape imposed by the
local structure of the liquid.57 By incorporating the Rotner-Prager
tensor,31,58 finite ion radii could be captured, although accounting
for the local ordering appears to be more challenging.

To further probe the impact of the local ordering on the dis-
tance dependence observed in Fig. 2, we computed the differences
between the ρXY determined from the MD data and the analytical
prediction of Eq. (33), i.e., ΔρXY = ρXY − ρPBC, and compared the
resulting differences to the appropriately scaled and shifted radial
distribution functions (RDFs, dashed curves). From Figs. 2(c) and
2(d), we observe good agreement of the peak positions of the RDFs
and ΔρXY for intermediate r, indicating that the deviations of the
MD data from Eq. (33) largely arise from the local electrolyte struc-
ture. Notably, for both CE and IL, a qualitative agreement between
the RDF peaks and ΔρXY is even found for the first solvation shell
(r ≈ 5 Å), although the deviations are somewhat larger for the CE
due to its sharp first cation–anion coordination peak in the RDF.
Apparently, the ions in the IL can be reasonably approximated as
spherical particles, whereas this simplification breaks down for the
CE because of the preferential coordination of the small lithium ions
to the TFSI oxygen atoms.

Nevertheless, the overall agreement between the MD data and
Eq. (33) is fairly good, demonstrating that hydrodynamic interac-
tions significantly govern the cooperative charge transport at larger
r. Importantly, these findings, therefore, demonstrate that not only
momentum conservation may lead to anticorrelated motion of ions
in periodic systems but also the approximate incompressibility of
the electrolyte gives rise to hydrodynamic interactions. The incom-
pressibility also rationalizes the locally correlated motion between
ions with like charges, as a given ion can only move when its
surroundings move in a similar direction. Of course, momentum
conservation is present in real systems [hence, the exclusion of
the zeroth mode in Eq. (21)] and clearly affects charge transport
in ILs, which we will discuss in Sec. IV B. Strikingly, qualitatively
similar features as in Fig. 2 have even been observed for polymer
electrolytes15,59,60 (although not the main focus of these studies),
again underscoring the universality of hydrodynamic interactions,
in line with other analytical calculations.61

IV. TIME DEPENDENCE OF IONIC PAIR DIFFUSION
A. Decay of hydrodynamic interactions

So far, diffusive dynamics has been implicitly assumed via
Eq. (11). However, the dynamics is still subdiffusive on a time scale

of Δt = 30 ps (CE) and 100 ps (IL), for which the ρXY in Fig. 2 have
been computed. Nonetheless, the agreement between the simula-
tion data and Eq. (33) is already almost quantitative. Of course, the
transport properties introduced in Sec. I are usually evaluated for
sufficiently large Δt, i.e., the diffusive regime. However, as argued
in Sec. III A, the ρXY -curves become blurred for large Δt due to the
fact that the distances between the ions change as Δt increases (in
fact, for Δt →∞, ρXY would even converge to a constant value irre-
spective of r). On the other hand, for short Δt, ρXY is well-defined,
but the dynamics is still subdiffusive, preventing the evaluation of
the contribution of ρXY to σXY . Therefore, we characterize the time
dependence of ρXY in more detail in the next step.

Naturally, for larger Δt, the magnitude of ρXY is larger in the
simulations because the ions traveled larger distances on average.
Theoretically, space and time dependence of ρXY are separated in
Eq. (33) as the former is given by the universal function [(L/r)
− ξ(L/r)], whereas the time dependence is exclusively contained
in the prefactor. Although not immediately apparent, not only the
linear Δt-term in the prefactor of Eq. (33) but also the short-time vis-
cosity η(Δt), which is not fully converged in the subdiffusive regime,
lend ρXY its time dependence. In analogy to Eq. (20), we therefore
phenomenologically define the short-time viscosity as

η(Δt) =
V

kBT∫
Δt

0
dt⟨Pβγ(0)Pβγ(t)⟩. (34)

Details of the calculation of the time-dependent viscosity are given
in Appendix C. Figures 4(a) and 4(b) show ρXY for three differ-
ent Δt-values normalized by (kBTΔt)/(πη(Δt)L) as expected from
Eq. (33) to yield dimensionless quantities. In this way, ρXY becomes
susceptible to dynamical intricacies beyond its trivial dependence
on viscosity. In other words, one can assess whether space and time
dependence are strictly separated as suggested by Eq. (33). Note that
the largest Δt-values in Fig. 4 were chosen such that they are slightly
smaller than the onset of the diffusive regime (see below) for reasons
mentioned above. In particular, we choose Δt = 3, 30, and 300 ps for
the CE and Δt = 10, 100, and 1000 ps for the IL.

From Figs. 4(a) and 4(b), we observe the characteristic hydro-
dynamic behavior for all Δt, that is both on time scales close to the
diffusive regime and within the subdiffusive regime down to a few
picoseconds. However, with increasing Δt, both the locally positive
(ρXY > 0) and globally negative correlations (ρXY < 0) diminish in
the normalized representation. This can be attributed to the fact that
after a certain time, the initial interionic distances r change due to
the motion of the ions, resulting in exchange processes within their
coordination shells. Consequently, the initial ρXY values become
averaged over different r, leading to the observed decay. This is in
agreement with the average distances traveled by the ions during
the individual Δt-values as estimated from the mean-squared dis-
placements (MSDs). In particular, for the CE, we find displacements
(averaged over both ion species) of 1.2, 2.5, and 6.6 Å for the respec-
tive Δt, whereas for the IL, the corresponding values are 1.2, 2.2,
and 5.3 Å, the values for the largest Δt being comparable with the
ion sizes. As mentioned above, for Δt →∞, ρXY would fully decay
due to the complete loss of information on the original distances
between the different ions. Note that for ILs, this constant would
be negative due to momentum conservation (Sec. I). Interestingly,
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FIG. 4. (a) and (b): Normalized ion cor-
relations ρXY at different Δt as a func-
tion of normalized distance r/L. The
color-coding of the pair types is identi-
cal to Fig. 2. The dashed-dotted black
curves correspond to the prediction from
Eq. (33) with time-dependent viscosity
η(Δt) (see text). (c) and (d): Weighted
and normalized cross-correlations in the
integrand 4πr2Γ± of Eq. (38) (see text).
(e) and (f): Integrated and normalized
cross-correlations χ

+
and χ

−
. The insets

of (e) and (f) show the mean squared
displacement (MSD) using the same nor-
malization as in the main figures. The
dashed lines in (b), (d), and (f) corre-
spond to the ILs with modified masses.
The relative uncertainties of the unnor-
malized plateau values at the largest Δt
in (e) and (f) are in the range of 10%.
Several curves have been shifted for
better visibility.

in the opposite limit Δt → 0, the velocities should obey the Maxwell-
Boltzmann distribution such that the velocities/displacements of two
ions are uncorrelated irrespective of their distance. Thus, also in the
short-time limit, ρXY would be a constant (which is negative for ILs
due to residual correlations satisfying momentum conservation28).
However, from Figs. 4(a) and 4(b), we find that starting from a few
picoseconds, the hydrodynamic picture already holds. This is also
reflected by the comparison with the theoretical curve [Eq. (33),
black dashed-dotted lines in Figs. 4(a) and 4(b); unlike in Fig. 2,
the curves were only normalized, but no fitting was performed]. For
both electrolytes, we find that for short Δt, the magnitude of ρXY is
larger than the prediction by about 10%–30% for all except short
r, for which the comparison breaks down due to the local struc-
ture. Keeping in mind that the dynamics only becomes diffusive at
the respective largest Δt, larger ρXY -values in the MD simulations
are not surprising as it is generally observed that when applying
Eq. (12) (or the corresponding equation for pair diffusion) in the
subdiffusive regime, the resulting approximate (pair) diffusion coef-
ficients are larger than their long-time values (see Fig. 5 in Sec. IV C
below). However, as argued above, ρXY decays due to structural

rearrangements in the opposite limit Δt →∞. In this context, it is
important to stress a subtle difference between the definition of ρXY
as extracted from the MD data and the hydrodynamic theory in
Sec. III B: Eq. (33) was derived on the basis of a continuous flow
field [see for example Eqs. (15) or (22)]; therefore, the pair diffusion
coefficient is determined for a fixed distance r between two points
within the periodic cell. On the contrary, the interionic distance
in the MD simulations evolves with time, which ultimately leads
to the complete decay of ρXY . Implications of this conceptual dif-
ference can indeed be observed from Figs. 4(a) and 4(b): Although
Eq. (33) predicts that space and time dependence can be separated,
the MD curves still show a residual time dependence (i.e., their
decay) despite the normalization by the prefactor of Eq. (33), which
theoretically contains the entire time dependence. At the onset of
the diffusive regime, the average displacement of the ions becomes
comparable with their own size or the size of their solvation shell22,62

(∼5 Å), which is still small compared with the large and intermediate
distances in Figs. 4(a) and 4(b). Consequently, we observe that the
hydrodynamic picture is still valid for the largest Δt values before
the trivial long-time decay continues. For the largest Δt values, we
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find that the MD curves in Figs. 4(a) and 4(b) match the predic-
tion from Eq. (33) almost quantitatively for larger r. Several factors
could contribute to this coincidence: First, the pair diffusion coef-
ficients are no longer overestimated as in the subdiffusive regime;
second, Eq. (34) converges to the constant long-time viscosity and
thus becomes equivalent to Eq. (20); and finally, the ion displace-
ments are still comparatively small to the interionic distances on
which hydrodynamic interactions are relevant.

It is also worth noting that the ρXY are similar to the cou-
pling factor λ defined in our recent work on IL/Li-salt mixtures.22 In
particular, λ expresses the degree of coupled diffusion between the
displacement vectors of initially neighbored ions, similar in spirit to
a correlation coefficient. For IL/Li-salt mixtures, we observed a large
degree of coupled diffusion for small salt concentrations (λ ≈ 0.8)
due to the stable lithium coordination shell composed of anions.22

Conversely, substantially smaller values for λ were found at high
concentrations because anions are shared between distinct lithium
ions as coordination partners. Consistent with the alternating struc-
ture of cations and anions in pure ILs studied in this work, leading to
shared coordination partners as well, one would expect a moderate
albeit significant degree of coupled diffusion. Indeed, when normal-
izing ρXY by the MSDs in analogy to λ, we find values of 0.35 for
the first coordination sphere of the IL. For the CE, this value is sig-
nificantly larger (∼0.6) as expected from the lower ion concentration
such that shared coordination shells composed of one anion and two
cations (or vice versa) hardly emerge. This is also in line with a recent
analysis showing that in CEs the transport mainly occurs in a vehicu-
lar fashion, i.e., collectively with the local environment.63 Moreover,
in our previous work, we found that λ decays with increasing time
due to the fact initially nearby ions disengage,22 compatible with the
present observations from Figs. 4(a) and 4(b). Nonetheless, we found
previously that even after a neighboring ion left a given ion’s coordi-
nation sphere, some residual dynamical coupling persists as a result
of the hydrodynamic flow field.22 The hydrodynamic theory devel-
oped in Sec. III fully rationalizes these earlier findings, as it accounts
for any interionic distance.

Finally, Fig. 4(b) also shows the respective normalized ρXY -
curves for the systems in which the ion masses have been scaled
(Sec. II) as dashed lines. Although the differences compared with
the original systems appear to be minute for ρXY , they will turn out
to be crucial for the contributions to σXY (Sec. IV B).

B. Implications for the conductivity
Next, we discuss how the electrolyte structure, the hydrody-

namic flow field, as well as the deviations from it govern σ+ and σ−.
More generally, to relate ρXY and σXY , we express Eq. (4) as

σXY(Δt) =
e2NX

6V kBTΔt
[⟨Δr2

(Δt)⟩X δXY +
zXzY(NY − δXY)

V

× ∫
V

dr ρXY(r, Δt) gXY(r)], (35)

in analogy to early analytical work48–51,64 and recent simulation
studies.28–30 Here, gXY(r) denotes the RDF between ion species X
and Y , ⟨Δr2

(Δt)⟩X is the MSD of species X during Δt, and δXY is the
Kronecker delta. For σX = σXX + σXY , we rewrite Eq. (6) as

σX(r, Δt) =
e2NX

6VkBTΔt
[⟨Δr2

(Δt)⟩X + χX(r, Δt)], (36)

where the first term on the right-hand side is the ideal Nernst-
Einstein conductivity,

σX,0(Δt) =
e2NXDX(Δt)

V kBT
, (37)

arising from the self-diffusion of species X [Eq. (12)] and

χX(r, Δt) = ∫
r

0
dr′ 4πr′2

NX

V
[

NX − 1
NX

ρXX(r′, Δt) gXX(r′)

− ρXY(r′, Δt) gXY(r′)]

= ∫

r

0
dr′ 4πr′2 ΓX(r′, Δt), (38)

is a short-hand notation for the distance-dependent cross-
correlations experienced by ions of type X. In Eq. (38), we expressed
χX as a function of the upper bound r of the integral. Although
spherical integration can be carried out due to isotropy, it should be
emphasized that the integral in Eq. (35) also contains contributions
for L/2 < r ≤

√
3L/2, for which gXY(r) < 1.

For ideal structureless electrolytes with gXY(r) = 1 and ρXY
strictly given by Eq. (33) (i.e., no deviations as observed in Fig. 2),
χX would be zero when integrated over the entire box because the
integral over Eq. (28) vanishes [this is most easily seen when per-
forming the integration of the analogous Eq. (27) for all three spatial
components separately].53,65 However, even for a real electrolyte,
it is obvious from Figs. 4(a) and 4(b) and Eq. (38) that when cal-
culating χ

+
and χ

−
, the hydrodynamic interactions contained in,

say, ρ
++

will largely cancel with those of ρ
+−

. That is only when
either ρXY is non-ideal (Fig. 2) or when gXY ≠ 1, remaining contri-
butions to χ

±
can be expected when subtracting the two integrands

in Eq. (38). Before embarking on the discussion of χ
±

, it is there-
fore instructive to consider the difference of the two integrands in
Eq. (38), denoted as Γ± and weighted by 4πr2 due to radial symme-
try [Figs. 4(c) and 4(d); the same normalization as for ρXY has been
applied]. We find that for both the CE and the IL, the non-vanishing
non-hydrodynamic contribution at short distances is negative (i.e.,
decreasing the overall conductivity) due to the preferential interac-
tions of oppositely charged ions on a local scale. However, although
for the CE only marginal contributions are observed for r/L ≳ 0.3
[Fig. 4(c)], several additional peaks occur up to a distance of r/L
≲ 0.6 for the IL [Fig. 4(d)]. As expected from the decay of ρXY for
larger Δt, the magnitude of the non-vanishing cross-correlations
decreases for both the CE and the IL. The dashed curves in Fig. 4(d)
again show the results for the IL with modified ion masses. As in
Fig. 4(b), these differences appear to be minute but will turn out to
be significant on integration via Eq. (38), which we will study next.

Figures 4(e) and 4(f) show the integrated χ
±

as a function of
the upper bound of the integral in Eq. (38) with the same normal-
ization as before. As already expected from Figs. 4(c) and 4(d), the
negative contribution at short distances is dominating, such that the
entire integral is smaller than zero for all r (note that the χ

+
-curves

have been shifted for clarity). Although this behavior is encountered
for both electrolytes, only the IL shows significant contributions
beyond local scales, again reflected by multiple peaks arising from
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FIG. 5. Time-dependent conductivities
(solid lines) and ideal Nernst-Einstein
conductivities (dashed lines) for (a) CE
and (b) IL. The standard deviations are
indicated as shaded regions. The degree
of uncorrelated ion motion, expressed as
σ/σ0, is shown in the insets (note that
for large Δt, the uncertainties become
large such that the estimation of σ/σ0
becomes challenging).

the rather long-ranged ordering. By contrast, χ
−

is approximately
constant for r/L ≳ 0.4 in the case of the CE, whereas χ

+
still displays

minor changes for larger r/L, probably due to a minor ordering of
the ions on these scales. Another interesting IL-specific effect can
be observed at large r from Fig. 4(f): Here, χ

+
still changes slightly

for r/L > 0.6. By comparison with the curves of the IL with mod-
ified masses (dashed curves), it becomes obvious that this is an
imprint of the momentum-conservation constraint, as the correlated
ionic motion at more local scales has to be globally compensated
(Sec. I). A similar observation can be made for the second IL studied
here, [EMIm][BF4], which is shown in Appendix B [Fig. 7(e)]. With
increasing Δt, the magnitude of the peaks of χ

±
decreases for both

CE and IL due to local relaxation processes as already observed from
Figs. 4(c) and 4(d).

Interestingly, also the plateau values of χ
±

at r/L→
√

3/2,
reflecting the overall cross-correlations, decrease with increasing Δt,
demonstrating that not all dynamical features in the subdiffusive
regime are captured by η(Δt). A similar finding was already made
in the context of Figs. 4(a) and 4(b): Unlike the hydrodynamic the-
ory based on a continuous flow field, the distances between discrete
ions in the simulation relax with time, which additionally con-
tributes to their mutual pair diffusion. Apparently, the residual time
dependence of ρXY(Δt) not contained in η(Δt) [Figs. 4(a) and 4(b)]
does not entirely vanish when performing the integration according
to Eq. (38) despite locally positive and globally negative correla-
tions. In particular, for CE, the magnitude of χint

+ = χ+(r/L→
√

3/2)
decreases by about 40% and the corresponding χint

− decreases by a
comparable amount of 30% when going from 3 to 300 ps. Due to
the fact that χint

± is negative and hence decreasing both σ± and σ,
its decrease in magnitude because of the additional relaxation pro-
cesses enhances the conductivity. In other words, if the dynamics
was entirely governed by η(Δt), χint

± would remain constant, lead-
ing to lower σ values for longer Δt. However, the decrease of ∣χint

± ∣

is overcompensated by an increase of η(Δt) by 130% between 3 and
300 ps, contributing to the fact that σ(Δt) decreases with increasing
Δt in the subdiffusive regime (see below). For the IL, the magni-
tude of χint

+ and χint
− decreases by 40%–50% when going from 10

to 1000 ps, whereas η(Δt) increases by a factor of almost six. This
indicates that although the relaxation of the electrolyte structure
affects χint

± and thus the conductivity value, the high viscosity of ILs
slows down the ionic motion more strongly compared with other
electrolytes.

In the case of ILs, the Δt-dependence of χint
± is influenced by

momentum conservation. This is best seen from the comparison

of [EMIm][TFSI] and [EMIm][BF4]: For [EMIm][TFSI], the value
decreases for χint

+ and χint
− with increasing Δt, both with standard

and with modified masses [Fig. 4(f)]. Although the same behavior
is found for [EMIm][BF4] for standard masses, the trend becomes
reverted for χint

+ when the masses are scaled [Fig. 7(e)]. In this
context, it is noteworthy that by our scaling procedure, the anions
become heavier than the cations for [EMIm][BF4], whereas the
opposite is true for standard molar masses. For [EMIm][TFSI];
however, the cations are lighter than the anions in both cases.
One may therefore speculate that the compensation of the local
exchange processes by the motion of remote ions is affected by these
details.

C. Self-diffusion and cross-correlation
Naturally, apart from the integrated cross-correlations χint

± , the
self-diffusion of the ions contributes a large fraction to the total con-
ductivity. In practice, one, therefore, usually aims not only to either
increase the mobility of the ions (often the cation) but also to alter
the ionic correlations by employing different salts or solvents to opti-
mize an electrolyte.1,2 The insets in Figs. 4(e) and 4(f) show the ions’
MSDs with the same normalization as for χint

± , making both quanti-
ties directly comparable. As for the cross-correlations, we observe
that not all dynamical features affecting the subdiffusive regime
are captured by η(Δt), reflected by an additional Δt-dependence
in Figs. 4(e) and 4(e). In particular, both curves become slightly
smaller for the CE, whereas in the case of the IL, the cationic
contribution increases, whereas the anionic contribution remains
constant. This shows that at least for certain ionic species, addi-
tional short-time processes, e.g., arising from local relaxation pro-
cesses, the ions’ internal degrees of freedom or forward–backward
correlations, affect the MSDs in a different fashion than the col-
lective property η(Δt). However, this apparent deviation from
the simplified Stokes-Einstein relation is not too surprising. From
experimental works and simulations, it is known that the Stokes-
Einstein relation provides a reasonable first estimate, although
deviations of about a factor of two are commonly observed.63,66

Interestingly, however, both the MSD and η(Δt) remain unaffected
within the uncertainties when changing the masses [dashed curves
Figs. 4(e) and 4(f) as well as Appendix C], consistent with the over-
damped dynamics in a highly viscous medium that is commonly
assumed.

Finally, Fig. 5 shows the conductivities σX together with ideal
Nernst-Einstein conductivities σX,0 [Eq. (37)]. Importantly, due to
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momentum conservation, σ+/σ− = m−/m+ for the IL (Sec. I). How-
ever, as evident from Figs. 4(e) and 4(f), the product χint

± (Δt) η(Δt)
is not strictly constant, which implies that also the diffusion coeffi-
cients contained in σX,0 cannot be fully governed by η(Δt), as other-
wise σ+/σ− ≠ const [cf. Eq. (36)]. Notably, the additional dynamical
contributions not contained in η(Δt) and affecting self-diffusion
and cross-correlations in a different way have important techni-
cal implications for MD simulations: The ratio σ/σ0, also termed
degree of uncorrelated motion, which is frequently used to quan-
tify the deviations from the Nernst-Einstein behavior,17,67,68 itself is
time-dependent, at least for the CE and the ILs studied in this work
[see insets of Figs. 5(a) and 5(b)]. Due to the fact that the uncer-
tainties of σ0 are considerably smaller than those of σ (the former
can be averaged over all N ions in the system, leading to uncertain-
ties roughly lower by a factor of

√
N),15,69 one might be tempted

to determine σ/σ0 on short subdiffusive scales and then using this
ratio in combination with the statistically more robust σ0 to extrap-
olate σ to the diffusive regime. However, our observations from
Fig. 5 show that such an approach is generally not valid because
σ/σ0 varies between 0.5 and 0.7 at Δt = 10 and 1000 ps, respec-
tively, for the IL. For the CE, the variation in σ/σ0 is smaller albeit
significant. Therefore, extrapolation from short Δt would under-
estimate the true σ. Consequently, the explicit calculation of σ is
necessary.

In total, our findings demonstrate that the pair-diffusion con-
tribution to the conductivity is affected by at least two dynamical
features: First, hydrodynamic interactions largely govern the overall
dynamics of the system. Apart from the electrolyte structure affect-
ing the precise value of the hydrodynamic integral, the viscosity
is a key parameter characterizing these interactions, in line with
the well-known Walden picture17,19,70–72 and recent MD results.73

Second, however, relaxation processes, leading to changes in the
interionic distances, give rise to additional dynamical contribu-
tions that are not captured by the hydrodynamic theory. For the
electrolytes studied in this work, these deviations lead to an enhance-
ment of the overall conductivity, although it is unclear whether this
is generally the case. Although the importance of hydrodynamic
interactions was already recognized in early analytical treatments
of ionic conductivity,48–51 the deviations observed in this work are
more intricate but can be probed by simulations. In this context,
it is also noteworthy that it has recently been speculated for CEs
that the local viscosity of the environment around an ion or a
solvate structure rather than the global viscosity is important for
diffusion.63 Similar local friction effects have been discussed in the

FIG. 6. Distance dependence of the finite-size correction ξ(r/L) in Eq. (33).

context of the structural relaxation of ILs.74,75 It seems plausible
that such local viscous effects are relevant for the pair diffusion as
well. This is even more reasonable as our current theory is based
on a single-component fluid with point particles. Theories describ-
ing hydrodynamic flow in multicomponent systems76,77 or finite ion
radii31,58 thus are possible extensions of the model. Nevertheless,
the present work shows that the hydrodynamic picture holds a very
good approximation until the onset of the diffusive regime. In pure-
salt electrolytes such as ILs, the pair diffusion is also affected by
momentum conservation. A similar effect is expected for highly con-
centrated binary electrolytes (i.e., salt and solvent).78,79 Through a
detailed analysis, the distinct contributions can be disentangled to
deliberately optimize the electrolytes.

V. CONCLUSIONS AND OUTLOOK
In this paper, we presented an analytical theory describing the

distance dependence of pair diffusion in periodic systems. Essen-
tially, due to the incompressibility of the medium, our theory
predicts locally correlated motion, which is compensated by a coun-
terflux at large distances. We find very good agreement between the
analytical prediction and the distance dependence of dynamical ion
correlations in ILs extracted from MD simulation data, although
noticeable deviations occur due to several different reasons: First, the
local structure of the electrolyte and the resulting effective potentials
acting on the ions give rise to deviations from the theoretical predic-
tion at short distances. Second, on larger time scales, the relaxation
of the electrolyte structure leads to the decay of the hydrody-
namic interactions. Finally, for ionic liquids, the physical constraint
of momentum conservation acts on larger length scales. Despite
this important constraint, our theory shows that the anticorrelated
motion occurring for ionic liquids at large distances in periodic
systems can be largely rationalized by hydrodynamic interactions
arising from the incompressibility of the electrolyte. Consequently,
the same qualitative behavior is observed for electrolytes including a
neutral solvent.

The decay of the hydrodynamic interactions is largely gov-
erned by the viscosity, in line with the well-known Walden
picture.17,19,70–72 However, the relaxation of the electrolyte structure
is not captured by the hydrodynamic theory such that significant
deviations arise that affect the ionic cross-correlations. Nonethe-
less, the hydrodynamic picture remains valid until the dynamics
becomes diffusive. Via our framework, it is possible to separate
the relative importance of hydrodynamic effects and relaxation,
which—in addition to the electrolyte structure—govern the collec-
tive dynamics between distinct ions. Because quantitatively different
deviations occur for the self-diffusion, the degree of uncorrelated
motion becomes time-dependent in the subdiffusive regime.

From the perspective of battery science and electrochemistry,
incorporating electrode interfaces into the formalism, in analogy to
recent work on self-diffusion near interfaces,80 is another promis-
ing avenue. In this context, it also seems worthwhile to scrutinize
a recent hypothesis according to which in concentrated electrolytes
confined between two electrodes, the transport parameters are gov-
erned by volume rather than momentum conservation.81 Finally,
our theoretical formalism likely also provides insights into the finite-
size effects of ionic correlations. Recently, Shao et al.73 have shown
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numerically that although the diffusion coefficients show their
well-known finite-size effects33–35 proportional to L−1, the overall
conductivity is independent of the system size, implying that the
cross-correlations must exhibit finite-size effects that compensate
the finite-size effect of the diffusivity. Indeed, a finite-size effect pro-
portional to L−1 was found from their MD simulations for the cross
correlations.73 Similar empirical observations have been made for
mutual diffusivities in multicomponent systems.82,83 Jamali et al.82

found that the finite-size correction for Maxwell-Stefan diffusivities
differs from that of the self-diffusion coefficients by a factor equal
to the inverse thermodynamic factor. From Eq. (33), we recognize
that the correction to the pair diffusion scales inversely with both
the viscosity as well as the box length, similar to that of self-diffusion
coefficients.33–35 As demonstrated by Jamali et al.,82 the impact of
the structure of the liquid on the pair (or mutual) diffusion could be
captured by the thermodynamic factors, which we leave for future
analyses.
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APPENDIX A: NUMERICAL EVALUATION
OF THE EWALD SUM

The distance dependence of ξ(r/L) in Eq. (33) was evaluated
numerically (Fig. 6). To this end, the convergence parameter α has
been chosen such that both the summation in real space and in
reciprocal space in Eq. (31) converged with a reasonable number
of lattice vectors (30 vectors in each spatial direction in our case),
which, in practice, corresponds to a value of αL on the order of one.
The orientation of the distance vector r has been sampled randomly
and the lattice sums in Eq. (31) have been carried out for all three
dimensions. We note that for r → 0, we recover the numerical value
of ξ ≈ 2.837 297 reported previously.33,34 For larger distances, ξ is a
slowly varying function of r, and decays to about 70% of its origi-
nal value for r/L =

√
3/2. Slight kinks can be observed at r/L = 1/2

(maximum distance in one spatial direction) and r/L =
√

2/2 (max-
imum distance within a plane defined by any two spatial directions).
Due to the fact that the above derivation approximates the particles
as point-like, no further length scale like the particle radius enters
the distance dependence shown in Fig. 6.

For the orientation-dependent flow fields ΔrPBC(r̂, r/L) in
Fig. 3, we carried out analogous lattice sums but retained the orien-
tational dependence expressed by the tensor products. In particular,
all real-space terms have been weighted by the tensor product
(Δr̂0 + (r̂ ⋅ Δr̂0)r̂), whereas the term evaluated in reciprocal space
was weighted by (Δr̂0 − (k̂ ⋅ Δr̂)k̂) (with Δr0 being the displacement
vector of a particle in the center of the box:

ΔrPBC(r̂, r/L) =
3
4

kBTΔt
πηL

[(Δr̂0 + (r̂ ⋅ Δr̂0)r̂)(
L
r
)

+∑
n≠0

2(Δr̂0 − (k̂ ⋅ Δr̂0)k̂)
πn2 exp (2πi n ⋅ (r/L))

× exp(−
π2n2

(αL)2 ) + (Δr̂0 + (r̂ ⋅ Δr̂0)r̂)
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+ (∑
n≠0

erfc((αL)∣(r/L) + n∣)
∣(r/L) + n∣

−
erf((αL)(r/L))

r/L
−

π
(αL)2 )] . (A1)

Unit values have been chosen for kBT, Δt, η, and L in Fig. 3, and all
vectors have been normalized to unit vectors.

APPENDIX B: COMPARISON WITH [EMIm][BF4]

In addition to [EMIm][TFSI], the IL [EMIm][BF4] has been
simulated as well. The analogous results are summarized in Fig. 7.
We observe that the results are qualitatively the same as for
[EMIm][TFSI].

APPENDIX C: VISCOSITY CALCULATION

To compute the prefactor in Eq. (33), the viscosity was
extracted from the MD data via the autocorrelation function
of the pressure tensor34,52 [Eqs. (20) and (34)]. Fig. 8 shows
⟨Pβγ(0)Pβγ(Δt)⟩ and the corresponding integral according to the
Green-Kubo relation in Eq. (34). We note that for the ILs starting
from around 500 ps, the statistics deteriorates. Nonetheless, since
absolute value of ⟨Pβγ(0)Pβγ(Δt)⟩ is small for Δt > 500 ps, the uncer-
tainties of the corresponding cumulative integrals (shaded areas in
Fig. 8) are acceptable until a few nanoseconds, at which η(Δt) con-
verges to its long-time value. The long-time viscosity was estimated
at Δt = 1 ns for both ILs, where the integral of Eq. (34) saturates.
We obtain η = 27.3 ± 3.9 mPa s for [EMIm][TFSI] and η = 38.1 ± 4.4
mPa s for [EMIm][BF4] at Δt = 1 ns. For the ILs with modified
masses, we find corresponding values of 31.5 ± 3.8 and 38.4 ± 3.6
mPa s for [EMIm][TFSI] and [EMIm][BF4], respectively. For larger
Δt-values no further trend for η(Δt) can be identified within the
uncertainties. Remarkably, the viscosities for the ILs with modi-
fied masses are identical to those of the standard ILs, showing that
the potential (mainly electrostatic) terms in Eq. (19) outweight the
kinetic terms. For the CE, the statistics deteriorates from about Δt >
100 ps. The estimated long-time viscosity at Δt = 300 ps is 3.0 ± 1.3
mPa s.

REFERENCES
1K. Xu, “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries,”
Chem. Rev. 104, 4303–4418 (2004).
2K. Xu, “Electrolytes and interphases in Li-ion batteries and beyond,” Chem. Rev.
114, 11503–11618 (2014).
3G. Gebresilassie Eshetu, M. Armand, B. Scrosati, and S. Passerini, “Energy
storage materials synthesized from ionic liquids,” Angew. Chem., Int. Ed. 53,
13342–13359 (2014).
4M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, and K. Dokko,
“Application of ionic liquids to energy storage and conversion materials and
devices,” Chem. Rev. 117, 7190–7239 (2017).
5M. Gouverneur, J. Kopp, L. van Wüllen, and M. Schönhoff, “Direct determina-
tion of ionic transference numbers in ionic liquids by electrophoretic NMR,” Phys.
Chem. Chem. Phys. 17, 30680–30686 (2015).
6M. Brinkkötter, G. A. Giffin, A. Moretti, S. Jeong, S. Passerini, and M. Schön-
hoff, “Relevance of ion clusters for Li transport at elevated salt concentrations in
[Pyr12O1][FTFSI] ionic liquid-based electrolytes,” Chem. Commun. 54, 4278–4281
(2018).

7A. Hosseinioun, P. Nürnberg, M. Schönhoff, D. Diddens, and E. Paillard,
“Improved lithium ion dynamics in crosslinked PMMA gel polymer electrolyte,”
RSC Adv. 9, 27574–27582 (2019).
8M. P. Rosenwinkel, R. Andersson, J. Mindemark, and M. Schönhoff,
“Coordination effects in polymer electrolytes: Fast Li+ transport by weak ion
binding,” J. Phys. Chem. C 124, 23588–23596 (2020).
9S. Pfeifer, F. Ackermann, F. Sälzer, M. Schönhoff, and B. Roling, “Quantification
of cation–cation, anion–anion and cation–anion correlations in Li salt/glyme mix-
tures by combining very-low-frequency impedance spectroscopy with diffusion
and electrophoretic NMR,” Phys. Chem. Chem. Phys. 23, 628–640 (2021).
10P. Nürnberg, J. Atik, O. Borodin, M. Winter, E. Paillard, and M. Schön-
hoff, “Superionicity in ionic-liquid-based electrolytes induced by positive ion–ion
correlations,” J. Am. Chem. Soc. 144, 4657–4666 (2022).
11S. Zugmann, M. Fleischmann, M. Amereller, R. M. Gschwind, H. D.
Wiemhöfer, and H. J. Gores, “Measurement of transference numbers for lithium
ion electrolytes via four different methods, a comparative study,” Electrochim.
Acta 56, 3926–3933 (2011).
12F. Wohde, M. Balabajew, and B. Roling, “Li+ transference numbers in liquid
electrolytes obtained by very-low-frequency impedance spectroscopy at variable
electrode distances,” J. Electrochem. Soc. 163, A714 (2016).
13N. M. Vargas-Barbosa and B. Roling, “Dynamic ion correlations in solid
and liquid electrolytes: How do they affect charge and mass transport?,”
ChemElectroChem 7, 367–385 (2020).
14P. G. Bruce, J. Evans, and C. A. Vincent, “Conductivity and transference number
measurements on polymer electrolytes,” Solid State Ionics 28–30, 918–922 (1988).
15F. Müller-Plathe and W. F. van Gunsteren, “Computer simulation of a polymer
electrolyte: Lithium iodide in amorphous poly(ethylene oxide),” J. Chem. Phys.
103, 4745–4756 (1995).
16D. R. Wheeler and J. Newman, “Molecular dynamics simulations of multicom-
ponent diffusion. 1. Equilibrium method,” J. Phys. Chem. B 108, 18353–18361
(2004).
17K. Oldiges, D. Diddens, M. Ebrahiminia, J. B. Hooper, I. Cekic-Laskovic, A.
Heuer, D. Bedrov, M. Winter, and G. Brunklaus, “Understanding transport mech-
anisms in ionic liquid/carbonate solvent electrolyte blends,” Phys. Chem. Chem.
Phys. 20, 16579 (2018).
18J. B. Haskins, W. R. Bennett, J. J. Wu, D. M. Hernández, O. Borodin, J. D.
Monk, C. W. Bauschlicher, Jr., and J. W. Lawson, “Computational and experimen-
tal investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI],
and [EMIM][BF4],” J. Phys. Chem. B 118, 11295–11309 (2014).
19V. Lesch, S. Jeremias, A. Moretti, S. Passerini, A. Heuer, and O. Borodin, “A
combined theoretical and experimental study of the influence of different anion
ratios on lithium ion dynamics in ionic liquids,” J. Phys. Chem. B 118, 7367–7375
(2014).
20N. Molinari, J. P. Mailoa, and B. Kozinsky, “Effect of salt concentration on ion
clustering and transport in polymer solid electrolytes: A molecular dynamics study
of PEO–LiTFSI,” Chem. Mater. 30, 6298–6306 (2018).
21N. Molinari, J. P. Mailoa, and B. Kozinsky, “General trend of a negative Li
effective charge in ionic liquid electrolytes,” J. Phys. Chem. Lett. 10, 2313–2319
(2019).
22A. Wettstein, D. Diddens, and A. Heuer, “Controlling Li+ transport in ionic
liquid electrolytes through salt content and anion asymmetry: A mechanistic
understanding gained from molecular dynamics simulations,” Phys. Chem. Chem.
Phys. 24, 6072–6086 (2022).
23W. Zhao, F. Leroy, B. Heggen, S. Zahn, B. Kirchner, S. Balasubrama-
nian, and F. Müller-Plathe, “Are there stable ion-pairs in room-temperature
ionic liquids? Molecular dynamics simulations of 1-n-butyl-3-methylimidazolium
hexafluorophosphate,” J. Am. Chem. Soc. 131, 15825–15833 (2009).
24B. R. Sundheim, “Transference numbers in molten salts,” J. Phys. Chem. 60,
1381–1383 (1956).
25B. R. Sundheim, “Transference phenomena in liquid electrolytes,” J. Chem.
Phys. 40, 27–32 (1964).
26H. K. Kashyap, H. V. R. Annapureddy, F. O. Raineri, and C. J. Margulis, “How
is charge transport different in ionic liquids and electrolyte solutions?,” J. Phys.
Chem. B 115, 13212–13221 (2011).

J. Chem. Phys. 158, 154112 (2023); doi: 10.1063/5.0147339 158, 154112-14

© Author(s) 2023

 15 January 2024 05:21:59

https://scitation.org/journal/jcp
https://doi.org/10.1021/cr030203g
https://doi.org/10.1021/cr500003w
https://doi.org/10.1002/anie.201405910
https://doi.org/10.1021/acs.chemrev.6b00504
https://doi.org/10.1039/c5cp05753a
https://doi.org/10.1039/c5cp05753a
https://doi.org/10.1039/c8cc01416g
https://doi.org/10.1039/c9ra05917b
https://doi.org/10.1021/acs.jpcc.0c08369
https://doi.org/10.1039/d0cp06147f
https://doi.org/10.1021/jacs.2c00818
https://doi.org/10.1016/j.electacta.2011.02.025
https://doi.org/10.1016/j.electacta.2011.02.025
https://doi.org/10.1149/2.0811605jes
https://doi.org/10.1002/celc.201901627
https://doi.org/10.1016/0167-2738(88)90304-9
https://doi.org/10.1063/1.470611
https://doi.org/10.1021/jp047850b
https://doi.org/10.1039/c8cp01485j
https://doi.org/10.1039/c8cp01485j
https://doi.org/10.1021/jp5061705
https://doi.org/10.1021/jp501075g
https://doi.org/10.1021/acs.chemmater.8b01955
https://doi.org/10.1021/acs.jpclett.9b00798
https://doi.org/10.1039/d1cp04830a
https://doi.org/10.1039/d1cp04830a
https://doi.org/10.1021/ja906337p
https://doi.org/10.1021/j150544a012
https://doi.org/10.1063/1.1724888
https://doi.org/10.1063/1.1724888
https://doi.org/10.1021/jp204182c
https://doi.org/10.1021/jp204182c


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

27D. Dong, F. Sälzer, B. Roling, and D. Bedrov, “How efficient is Li+ ion trans-
port in solvate ionic liquids under anion-blocking conditions in a battery?,” Phys.
Chem. Chem. Phys. 20, 29174–29183 (2018).
28K.-M. Tu, R. Ishizuka, and N. Matubayasi, “Spatial-decomposition analysis of
electrical conductivity in ionic liquid,” J. Chem. Phys. 141, 244507 (2014).
29K.-M. Tu, R. Ishizuka, and N. Matubayasi, “Spatial-decomposition analysis of
electrical conductivity in concentrated electrolyte solution,” J. Chem. Phys. 141,
044126 (2014).
30N. Matubayasi, “Spatial-decomposition analysis of electrical conductivity,”
Chem. Rec. 19, 723–734 (2019).
31C. W. J. Beenakker, “Ewald sum of the Rotne–Prager tensor,” J. Chem. Phys. 85,
1581–1582 (1986).
32B. Dünweg, “Molecular dynamics algorithms and hydrodynamic screening,” J.
Chem. Phys. 99, 6977–6982 (1993).
33B. Dünweg and K. Kremer, “Molecular dynamics simulation of a polymer chain
in solution,” J. Chem. Phys. 99, 6983–6997 (1993).
34I.-C. Yeh and G. Hummer, “System-size dependence of diffusion coefficients
and viscosities from molecular dynamics simulations with periodic boundary
conditions,” J. Phys. Chem. B 108, 15873–15879 (2004).
35S. Gabl, C. Schröder, and O. Steinhauser, “Computational studies of ionic
liquids: Size does matter and time too,” J. Chem. Phys. 137, 094501 (2012).
36O. Borodin, “Polarizable force field development and molecular dynamics
simulations of ionic liquids,” J. Phys. Chem. B 113, 11463–11478 (2009).
37D. Bedrov, J.-P. Piquemal, O. Borodin, A. D. MacKerell, Jr., B. Roux, and C.
Schröder, “Molecular dynamics simulations of ionic liquids and electrolytes using
polarizable force fields,” Chem. Rev. 119, 7940–7995 (2019).
38G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nosé–Hoover chains: The
canonical ensemble via continuous dynamics,” J. Chem. Phys. 97, 2635–2643
(1992).
39J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the
cartesian equations of motion of a system with constraints: Molecular dynamics
of n-alkanes,” J. Comput. Phys. 23, 327–341 (1977).
40B. J. Palmer, “Direct application of SHAKE to the velocity Verlet algorithm,” J.
Comput. Phys. 104, 470–472 (1993).
41G. J. Martyna, D. J. Tobias, and M. L. Klein, “Constant pressure molecular
dynamics algorithms,” J. Chem. Phys. 101, 4177–4189 (1994).
42G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, “Explicit
reversible integrators for extended systems dynamics,” Mol. Phys. 87, 1117–1157
(1996).
43S. von Bülow, J. T. Bullerjahn, and G. Hummer, “Systematic errors in diffusion
coefficients from long-time molecular dynamics simulations at constant pressure,”
J. Chem. Phys. 153, 021101 (2020).
44M. Kulke and J. V. Vermaas, “Reversible unwrapping algorithm for constant-
pressure molecular dynamics simulations,” J. Chem. Theory Comput. 18,
6161–6171 (2022).
45J. N. A. Canongia Lopes and A. A. H. Pádua, “Nanostructural organization in
ionic liquids,” J. Phys. Chem. B 110, 3330–3335 (2006).
46C. Hardacre, J. D. Holbrey, M. Nieuwenhuyzen, and T. G. A. Youngs, “Structure
and solvation in ionic liquids,” Acc. Chem. Res. 40, 1146–1155 (2007).
47M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University
Press, 1988), Vol. 73.
48R. M. Fuoss and L. Onsager, “The conductance of symmetrical electrolytes. III.
Electrophoresis,” J. Phys. Chem. 67, 628–632 (1963).
49W. H. Lee and R. J. Wheaton, “Conductance of symmetrical, unsymmetrical
and mixed electrolytes. Part 2.—Hydrodynamic terms and complete conductance
equation,” J. Chem. Soc., Faraday Trans. 2 74, 1456–1482 (1978).
50W. Ebeling, R. Feistel, and R. Sändig, “Electrolytic conductance for Gurney-
Friedman models,” J. Solution Chem. 8, 53–82 (1979).
51A. R. Altenberger and H. L. Friedman, “Theory of conductance and related
isothermal transport coefficients in electrolytes,” J. Chem. Phys. 78, 4162–4173
(1983).
52B. L. Holian and D. J. Evans, “Shear viscosities away from the melting line: A
comparison of equilibrium and nonequilibrium molecular dynamics,” J. Chem.
Phys. 78, 5147–5150 (1983).

53G. Hummer, L. R. Pratt, and A. E. García, “Molecular theories and simulation
of ions and polar molecules in water,” J. Phys. Chem. A 102, 7885–7895 (1998).
54H. Hasimoto, “On the periodic fundamental solutions of the Stokes equations
and their application to viscous flow past a cubic array of spheres,” J. Fluid Mech.
5, 317–328 (1959).
55T. Cao, X. Ji, J. Wu, S. Zhang, and X. Yang, “Correction of diffusion calcu-
lations when using two types of non-rectangular simulation boxes in molecular
simulations,” J. Mol. Model. 25, 22 (2019).
56J. Mittal and G. Hummer, “Pair diffusion, hydrodynamic interactions, and
available volume in dense fluids,” J. Chem. Phys. 137, 034110 (2012).
57G. Hummer, “Position-dependent diffusion coefficients and free energies from
Bayesian analysis of equilibrium and replica molecular dynamics simulations,”
New J. Phys. 7, 34 (2005).
58J. Rotne and S. Prager, “Variational treatment of hydrodynamic interaction in
polymers,” J. Chem. Phys. 50, 4831–4837 (1969).
59F. Müller-Plathe, “Permeation of polymers—A computational approach,” Acta
Polym. 45, 259–293 (1994).
60A. Maitra and A. Heuer, “Understanding correlation effects for ion conduction
in polymer electrolytes,” J. Phys. Chem. B 112, 9641–9651 (2008).
61J. Farago, H. Meyer, and A. N. Semenov, “Anomalous diffusion of a polymer
chain in an unentangled melt,” Phys. Rev. Lett. 107, 178301 (2011).
62J. Self, K. D. Fong, and K. A. Persson, “Transport in superconcentrated LiPF6

and LiBF4/propylene carbonate electrolytes,” ACS Energy Lett. 4, 2843–2849
(2019).
63R. Andersson, O. Borodin, and P. Johansson, “Dynamic structure discovery
applied to the ion transport in the ubiquitous lithium-ion battery electrolyte
LP30,” J. Electrochem. Soc. 169, 100540 (2022).
64T. Yamaguchi, T. Matsuoka, and S. Koda, “A theoretical study on the frequency-
dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic
interaction,” J. Chem. Phys. 130, 094506 (2009).
65F. Figueirido, G. S. Del Buono, and R. M. Levy, “On finite-size effects in com-
puter simulations using the Ewald potential,” J. Chem. Phys. 103, 6133–6142
(1995).
66A. Kaintz, G. Baker, A. Benesi, and M. Maroncelli, “Solute diffusion in ionic
liquids, NMR measurements and comparisons to conventional solvents,” J. Phys.
Chem. B 117, 11697–11708 (2013).
67O. Borodin and G. D. Smith, “LiTFSI structure and transport in ethylene car-
bonate from molecular dynamics simulations,” J. Phys. Chem. B 110, 4971–4977
(2006).
68B. K. Wheatle, N. A. Lynd, and V. Ganesan, “Effect of polymer polarity on
ion transport: A competition between ion aggregation and polymer segmental
dynamics,” ACS Macro Lett. 7, 1149–1154 (2018).
69A. France-Lanord and J. C. Grossman, “Correlations from ion pairing and the
Nernst-Einstein equation,” Phys. Rev. Lett. 122, 136001 (2019).
70P. Walden, “Über organische Lösungs-und Ionisierungsmittel,” Z. Phys. Chem.
54U, 129–230 (1906).
71M. Yoshizawa, W. Xu, and C. A. Angell, “Ionic liquids by proton transfer: Vapor
pressure, conductivity, and the relevance of ΔpKa from aqueous solutions,” J. Am.
Chem. Soc. 125, 15411–15419 (2003).
72K. Ueno, H. Tokuda, and M. Watanabe, “Ionicity in ionic liquids: Correlation
with ionic structure and physicochemical properties,” Phys. Chem. Chem. Phys.
12, 1649–1658 (2010).
73Y. Shao, K. Shigenobu, M. Watanabe, and C. Zhang, “Role of viscosity in
deviations from the Nernst-Einstein relation,” J. Phys. Chem. B 124, 4774–4780
(2020).
74T. Yamaguchi, “Coupling between the mesoscopic dynamics and shear stress
of a room-temperature ionic liquid,” Phys. Chem. Chem. Phys. 20, 17809–17817
(2018).
75W. D. Amith, J. C. Araque, and C. J. Margulis, “Relationship between the relax-
ation of ionic liquid structural motifs and that of the shear viscosity,” J. Phys.
Chem. B 125, 6264–6271 (2021).
76E. Wacholder and D. Weihs, “Slow motion of a fluid sphere in the vicinity of
another sphere or a plane boundary,” Chem. Eng. Sci. 27, 1817–1828 (1972).

J. Chem. Phys. 158, 154112 (2023); doi: 10.1063/5.0147339 158, 154112-15

© Author(s) 2023

 15 January 2024 05:21:59

https://scitation.org/journal/jcp
https://doi.org/10.1039/c8cp06214e
https://doi.org/10.1039/c8cp06214e
https://doi.org/10.1063/1.4904382
https://doi.org/10.1063/1.4890741
https://doi.org/10.1002/tcr.201800116
https://doi.org/10.1063/1.451199
https://doi.org/10.1063/1.465444
https://doi.org/10.1063/1.465444
https://doi.org/10.1063/1.465445
https://doi.org/10.1021/jp0477147
https://doi.org/10.1063/1.4748352
https://doi.org/10.1021/jp905220k
https://doi.org/10.1021/acs.chemrev.8b00763
https://doi.org/10.1063/1.463940
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1006/jcph.1993.1045
https://doi.org/10.1006/jcph.1993.1045
https://doi.org/10.1063/1.467468
https://doi.org/10.1080/00268979600100761
https://doi.org/10.1063/5.0008316
https://doi.org/10.1021/acs.jctc.2c00327
https://doi.org/10.1021/jp056006y
https://doi.org/10.1021/ar700068x
https://doi.org/10.1021/j100797a021
https://doi.org/10.1039/f29787401456
https://doi.org/10.1007/bf00646809
https://doi.org/10.1063/1.445093
https://doi.org/10.1063/1.445384
https://doi.org/10.1063/1.445384
https://doi.org/10.1021/jp982195r
https://doi.org/10.1017/s0022112059000222
https://doi.org/10.1007/s00894-018-3910-6
https://doi.org/10.1063/1.4732515
https://doi.org/10.1088/1367-2630/7/1/034
https://doi.org/10.1063/1.1670977
https://doi.org/10.1002/actp.1994.010450401
https://doi.org/10.1002/actp.1994.010450401
https://doi.org/10.1021/jp711563a
https://doi.org/10.1103/physrevlett.107.178301
https://doi.org/10.1021/acsenergylett.9b02118
https://doi.org/10.1149/1945-7111/ac96af
https://doi.org/10.1063/1.3085717
https://doi.org/10.1063/1.470721
https://doi.org/10.1021/jp405393d
https://doi.org/10.1021/jp405393d
https://doi.org/10.1021/jp056249q
https://doi.org/10.1021/acsmacrolett.8b00594
https://doi.org/10.1103/physrevlett.122.136001
https://doi.org/10.1515/zpch-1906-5408
https://doi.org/10.1021/ja035783d
https://doi.org/10.1021/ja035783d
https://doi.org/10.1039/b921462n
https://doi.org/10.1021/acs.jpcb.0c02544
https://doi.org/10.1039/c8cp02814a
https://doi.org/10.1021/acs.jpcb.1c03105
https://doi.org/10.1021/acs.jpcb.1c03105
https://doi.org/10.1016/0009-2509(72)85043-7


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

77P. G. Wolynes and J. M. Deutch, “Slip boundary conditions and the hydro-
dynamic effect on diffusion controlled reactions,” J. Chem. Phys. 65, 450–454
(1976).
78Y. Yamada, J. Wang, S. Ko, E. Watanabe, and A. Yamada, “Advances and issues
in developing salt-concentrated battery electrolytes,” Nat. Energy 4, 269–280
(2019).
79O. Borodin, J. Self, K. A. Persson, C. Wang, and K. Xu, “Uncharted waters:
Super-concentrated electrolytes,” Joule 4, 69–100 (2020).
80P. Simonnin, B. Noetinger, C. Nieto-Draghi, V. Marry, and B. Rotenberg,
“Diffusion under confinement: Hydrodynamic finite-size effects in simulation,”
J. Chem. Theory Comput. 13, 2881–2889 (2017).

81M. Lorenz, F. Kilchert, P. Nürnberg, M. Schammer, A. Latz, B. Horstmann, and
M. Schönhoff, “Local volume conservation in concentrated electrolytes is govern-
ing charge transport in electric fields,” J. Phys. Chem. Lett. 13(37), 8751–8767
(1976).
82S. H. Jamali, L. Wolff, T. M. Becker, A. Bardow, T. J. H. Vlugt, and O. A. Moul-
tos, “Finite-size effects of binary mutual diffusion coefficients from molecular
dynamics,” J. Chem. Theory Comput. 14, 2667–2677 (2018).
83A. T. Celebi, S. H. Jamali, A. Bardow, T. J. H. Vlugt, and O. A. Moultos,
“Finite-size effects of diffusion coefficients computed from molecular dynam-
ics: A review of what we have learned so far,” Mol. Simul. 47, 831–845
(2021).

J. Chem. Phys. 158, 154112 (2023); doi: 10.1063/5.0147339 158, 154112-16

© Author(s) 2023

 15 January 2024 05:21:59

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.432788
https://doi.org/10.1038/s41560-019-0336-z
https://doi.org/10.1016/j.joule.2019.12.007
https://doi.org/10.1021/acs.jctc.7b00342
https://doi.org/10.1021/acs.jpclett.2c02398
https://doi.org/10.1021/acs.jctc.8b00170
https://doi.org/10.1080/08927022.2020.1810685

