
Linking Network and Neuron Level
Correlations via Renormalized Field Theory
Michael Dick1,2,3*, Alexander van Meegen1,4, Moritz Helias1,5

1 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and
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Introduction
It is hypothesized that cortical networks operate close to
a critical point. But which one? Popular candidates are a
transition to chaos and an avalanche like criticality. Both
have been studied separately, but we want to pave the
way to a proper comparison in one model.

Model and DMFT breakdown
• focus on SCS model

ẋi + xi =
N

∑
j=1

Jijϕ(xj) + ξi,

Jij
i.i.d.∼ N ( ḡ

N
,
g2

N
)

⟨ξi(t)ξj(s)⟩ =D δij δ(t − s)
• g2 controls transition to chaos

– already well studied
• ḡ for avalanche like criticality

– out focus here
Mean-field approaches on fields like

R(t) ∶= ḡ

N

N

∑
j=1

ϕj(t),

Q(s, t) ∶=g
2

N

N

∑
j=1

ϕj(s)ϕj(t),

are common, giving a way to obtain an effective low-
dimensional set of equations for the collective behavior.
This means approximating

RMF(t) = ḡµϕ(t) = ḡ⟨ϕ(t)⟩,
QMF(t, s) = g2Cϕϕ(s, t)⟩ = g2⟨ϕ2(s, t)⟩,

yielding a stochastic
differential equation
for a single Neuron

ẋ + x = ξ + η,

⟪η(t)⟫ = ḡµϕ(t),
⟪η(s)η(t)⟫ = g2Cϕϕ(s, t),
near the transition to epilepsy this approach breaks down.

Thus renormalized theory...

Methods
• employ the MSRDJ formalism to get field theoretic

description
• Insert sources for the first two cumulants of y =
(R, R̃, Q, Q̃)

Z[j, k] = ∫
y
eNW[y]+jTy+1

2y
TkTy,

• perform a 2nd order Legendre transform
– create an ensemble described by cumulants
– sources as observables

Γ[β1, β2] = extrĵ,k − ln ∫
y
eNW[y]+ĵT(y−β1)+1

2k
T[(y−β1)2−β2],

• approximate the resulting effective action to 1-loop
(1/N) order.

Γ1-loop[β1, β2] = −NW[β1] −
1
2
NW(2)[β1]Tβ2

+ 1
2

ln det(β2),

• solve such that the real sources a realised
• thus create system of self consistent equations for the

cumulants

β11(ω) =
1 + ω2

(1 − ḡ⟨ϕ′⟩)2 + ω2
ḡ2

N
⟪ϕ, ϕ⟫∗(ω).

• here we can see that time constants diverge if ḡ⟨ϕ′⟩ = 1
Finally we get:
Q∗(s, t) =g2⟪ϕ2(s, t)⟫∗

+ 1
2
g2∫

u,v
⟪ϕ2(s, t), x̃(u), x̃(v)⟫∗β11(u, v)

+g2ḡ∫
u,v
⟪ϕ2(s, t), x̃(u), ϕ(v)⟫∗β12(u, v)

−g4

2 ∫u1,2,v1,2
⟪ϕ2(s, t), x̃2(u1, u2), ϕ2(v1, v2)⟫∗

β34(u1, u2, v1, v2)

Interpretation:
• mean-field neuron interacting with a bath
• first contribution equivalent to mean-field
• second contribution is the effect of fluctuations of R

on variance of mean-field neurons input
• third term the effect of fluctuations neuronal activity

echoed in the bath on the variance
• fourth term also echoes but due to fluctuations of ϕ2

interesting Appendix things
• critical coupling strength in DMFT for ϕ(x) =

erf(√πx/2)
• ⟨∏n

i x̃(si)∏m
j ϕ(x(tj))⟩ in terns of response functions

and expectation values of derivatives any ϕ which is
zero at the origin
– ⟨⟨ϕx̃x̃⟩⟩∝ ⟨ϕ′′⟩

• Legendre transformation in cumulants instead of mo-
ments

• completely analytical results for linear networkReferences
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Results
• Here we set ϕ(x) = erf(√πx/2)
• consider only the corrections due to β11(t − s) =
⟨⟨R(t)R(s)⟩⟩

our theory
• describes the autocorrelation very well
• clearly shows the influence of population autocorrela-

tion on single neurons

under common input:
• network with g = 0 behaves like capacitor
• for g > 0 increase in Q counteracts rise in R

µϕ = ϕ( µx√
1 + π

2σ2
x

)

Access to Q and β11 allows us to also calculate the cross
correlations:

Cx
ϕϕ(t − s) ∶= 1

N 2∑
i≠j

ϕi(s)ϕj(t) =
β11(s, t)

ḡ2 − Q(s, t)
Ng2


