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A B S T R A C T   

Activation likelihood estimation (ALE) meta-analysis has been applied to structural neuroimaging data since long, but up to now, any systematic assessment of the 
algorithm’s behavior, power and sensitivity has been based on simulations using functional neuroimaging databases as their foundation. Here, we aimed to determine 
whether the guidelines offered by previous evaluations can be generalized to ALE meta-analyses of voxel-based morphometry (VBM) studies. We ran 365000 distinct 
ALE analyses filled with simulated experiments, randomly sampling parameters from BrainMap’s VBM experiment database. We then examined the algorithm’s 
sensitivity, its susceptibility to spurious convergence, and its susceptibility to excessive contributions by individual experiments. In general, the performance of the 
ALE algorithm was highly comparable between imaging modalities, with the algorithm’s sensitivity and specificity reaching similar levels with structural data as 
previously observed with functional data. Because of the lower number of foci reported and the higher number of participants usually included in structural ex
periments, individual studies had, on average, a higher impact towards significant clusters. To prevent significant clusters from being driven by single experiments, 
we recommend that researchers include at least 23 experiments in a VBM ALE dataset, instead of the previously recommended minimum of n = 17. While these 
recommendations do not constitute hard borders, running ALE analyses on smaller datasets would require special diligence in assessing and reporting the contri
butions of experiments to individual clusters.   

1. Introduction 

Activation Likelihood Estimation (ALE) is a widely used approach for 
coordinate-based neuroimaging meta-analysis and has been under 
constant methodological development and review since its inception in 
2002 (Acar et al., 2018; Eickhoff et al., 2009, Turkeltaub et al., 2002, 
2012). Recent methodological evaluations of ALE have begun to use 
large-scale empirically informed simulations (Frahm et al. 2022; 
Eickhoff et al. 2016). While offering valuable insights, the results of such 
simulations are highly dependent on the data and parameters the sim
ulations are based on. All ALE-related simulation work up to now has 
used the functional neuroimaging part of the BrainMap database (Fox 
and Lancaster, 2002; Laird et al., 2005) as the basis for its data creation, 
but the ALE algorithm is also applied to structural neuroimaging data
sets as anatomic likelihood estimation. Notable examples include the 

2015 meta-analysis by Goodkind et al. which identified common 
neurobiological substrates across mental illnesses or Gray and col
leagues (2020) paper which highlighted abnormalities in brain structure 
in major depressive disorder (other examples: Cauda et al., 2018 & 
Vanasse et al., 2021). The current study aimed to extend previous sim
ulations, leveraging BrainMap’s fairly recently released structural 
database (Vanasse et al., 2018). This is motivated by the fact that 
functional imaging experiments differ quite strongly from structural 
imaging experiments with respect to the average number of participants 
included and the number of significant coordinates reported (see Ta
bles 1 and 2). Both numbers are parameters of the ALE algorithm and, 
therefore, can have a major impact on the meta-analytic results, which 
makes it very important to evaluate the validity of assumptions made by 
previous simulation studies and the recommendations derived from 
them, using simulations based on a structural neuroimaging database. 
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In 2016, Eickhoff et al. investigated the behavior, sensitivity and 
power of ALE when presented with different thresholding techniques 
using a simulation setup. Importantly, these simulations were used to 
estimate a lower bound of experiments researchers should aim to 
include in their ALE analysis dataset. The basis for this lower bound was 
formed by power calculations, showing that a dataset should contain at 
least 15-20 experiments for the algorithm to be able to detect non-trivial 
convergence. Additionally, this lower bound limits the likelihood of 
significant clusters being driven by single experiments. The datasets 
were created by randomly sampling experimental characteristics 
(number of subjects, number of foci reported) from the functional 
BrainMap database. As yet, it has remained unclear whether the rec
ommendations made by the paper also hold for other types of neuro
imaging data such as those obtained from voxel-based morphometry 
(VBM). 

In this study we aimed to determine whether the guidelines offered 
by previous studies can be generalized to VBM meta-analyses. To this 
end, we ran 365000 distinct ALE analyses on datasets filled with simu
lated experiments, randomly sampling parameters from BrainMap’s 
structural database. We then evaluated the results obtained with two 
standard significance thresholding methods, voxel- and cluster-level 
family-wise error rate (vFWE and cFWE), by examining sensitivity and 
susceptibility to spurious convergence. Lastly, we assessed ALE’s sus
ceptibility to excessive contributions by individual experiments when 
dealing with VBM data. 

2. Methods 

Our methodological set-up comprised three distinct steps: (1) simu
lating datasets based on parameter distributions derived from the VBM 
BrainMap database, (2) calculating an ALE analysis for each dataset, (3) 
evaluating the results and the algorithm’s behavior across the whole 
parameter range on different outcome measures. It should be noted that 
for each dataset we systematically manipulated the number of truly 
converging foci, which made it possible to assess power and sensitivity 
at different levels of evidence strength. 

2.1. Simulated datasets 

To cover the large range of possible dataset sizes encountered in 
naturalistic research, we simulated and analyzed datasets containing 
between 15 and 45 experiments in total. While the number of partici
pants in VBM studies is generally higher than in studies using task- 
related functional imaging, the total number of experiments available 
for meta-analysis per domain is not noticeably different. This is why we 
applied the same range of dataset sizes as in previous research exam
ining ALE of functional data. 

Each experiment’s relevant characteristics, namely number of par
ticipants and number of reported foci, were randomly drawn from dis
tributions based on the structural neuroimaging part of the BrainMap 
database. Before sampling, we removed 17 experiments, which featured 
more than 500 participants, constituting extreme outliers (Z > 5). This 
left us with 4270 experiments in total. The coordinates reported by each 
experiment were uniformly sampled from a gray-matter mask created 
from the ICBM tissue probability maps (> 10% probability for gray 
matter; (Evans et al., 1994)). To model convergence in the datasets, we 
chose a ground-truth location in the left primary motor cortex 
(-30/-26/58 MNI space) and varied the number of experiments per 
analysis reporting a focus in the vicinity of this location from zero to ten. 
For these experiments, a coordinate that was based on the “true loca
tion” and then slightly displaced by a spread distribution (Eickhoff et al., 
2016) replaced the first simulated random coordinate. The particular 
location of the ground-truth effect has no impact on the results of the 
study and was chosen only for visualization purposes. Varying both the 
total number of experiments and the number of experiments featuring a 
“true” alteration yielded a total of 330 unique combinations, for each of 
which we created 500 datasets to account for the randomness in the 
dataset simulation. This yielded a total of 165’000 datasets (Fig. 1). As a 
post-hoc addition to the contribution analysis, we additionally simu
lated 5000 smaller datasets comprising 5 to 15 experiments. 

Real-life ALE meta-analyses are almost always looking at specific 
tasks, subject groups or individual disorders, which means that they 
could potentially feature more homogenous parameter distributions 
than our simulated datasets. For example, experiments on major 
depressive disorder might on average feature more subjects than ex
periments on schizophrenia, just based on prevalence alone (Pedersen 
et al., 2014). To rule out the potential that our findings relating to the 
excessive contribution of individual experiments were driven by the 
heterogeneity of our datasets, we ran supplementary analysis based on 
the 25%, 50% and 75% quantiles of the two important parameter dis
tributions, namely number of subjects and number of foci. We created 
four categories for each parameter: 1. low, which meant sampling only 
up to the 25% quantile 2. low-medium, which meant sampling between 
the 25% and 50% quantile 3. high-medium, which meant sampling 
between the 50% and 75% quantile and 4. high which meant sampling 
above the 75% quantile (Table 3). 

By combining each category from one parameter with all categories 
from the other parameter we got 16 groups (low/low, low/low-medium, 
low/high-medium, low/high, low-medium/low, etc.) for each of which 
we created 500 datasets per dataset size (number of experiments: 5-30) 
to account for the randomness in the sampling procedure. This yielded a 
total of 200000 datasets. 

2.2. ALE analyses 

We ran ALE meta-analyses using the latest implementation of the 
ALE algorithm (Eickhoff et al., 2016; Frahm et al., 2022; Turkeltaub 
et al., 2012). We then tested for statistically significant spatial conver
gence across experiments using voxel- and cluster-level thresholding 
(cluster-forming threshold at voxel-level p<.001), respectively, cor
rected for multiple comparisons by restricting the family-wise error 
(FWE) rate to p < .05. All analyses were run with a Python version of the 
ALE algorithm as used and described previously (Frahm et al., 2022) 
(https://github.com/LenFrahm/pyALE). 

2.3. Outcome measures 

After meta-analyzing all datasets, we evaluated the results obtained 
with FWE-corrected voxel-level or cluster-level thresholding (vFWE or 
cFWE) on three different outcome measures. First, we assessed each 
method’s sensitivity, which is given by the percentage of datasets for 
which the algorithm indicated a significant cluster in the close vicinity of 
the “true location”. This close vicinity was determined to be 4mm (or 2 

Table 1 
Descriptive Statistics of the Number of Participants in Voxel-based Morphometry 
(VBM) and Task-Activation (TA) Subsets of the BrainMap Database   

VBM TA 

Min / Max 2 / 479 1 / 322 
Mean / Median 30.63 / 20 14.69 / 12 
Standard deviation 40.91 10.70  

Table 2 
Descriptive Statistics of the Number of Foci reported in Voxel-based 
Morphometry (VBM) and Task-Activation (TA) Subsets of the BrainMap 
Database   

VBM TA 

Min / Max 1 / 75 1 / 97 
Mean / Median 6.54 / 4 8.27 / 6 
Standard deviation 7.88 8.10  
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voxels) in each direction, by exploratory analyses. When only counting 
datasets in which the “true location” was significantly altered we would 
end up underestimating the algorithms sensitivity, due to the displace
ment of the “true coordinate” moving around the center of the clusters. 
Obviously, high detection rates were desirable. Second, we looked at the 
susceptibility to spurious convergence, which is given by the rate of 
significant clusters outside the “true” location’s close vicinity. As these 
clusters are known to be the result of incidental convergence, a desirable 
thresholding method should keep this as low as possible. Third, we 
looked at the relative contribution of the most dominant experiments to 
the ALE values of voxels in spurious clusters and the impact of the 
thresholding methods on this number. The contribution was calculated 
by sorting the modeled activation values (Turkeltaub et al., 2012) per 
voxel in decreasing order, subtracting them from one, and calculating 
the cumulative product. This gave us the fraction of ALE value per voxel 
including only the most dominant experiment, only the two most 
dominant experiments, only the three most dominant experiments, etc. 
We then averaged these fractions over all voxels in the given cluster, 
which allowed us to assess the contribution of the most dominant ex
periments across the whole cluster. Following previous literature, any 
given cluster should not be driven by more than 50% by a single 

experiment (Eickhoff et al. 2016), which serves as a cut-off point for the 
lower bound recommendation. For this last outcome measure we addi
tionally considered uncorrected inference, as a third way of significance 
thresholding. 

3. Results 

3.1. Differences between task and VBM database 

The functional and structural BrainMap databases differed in their 
parameter distributions, reflecting typical differences in study design 
and outcomes between the two neuroimaging modalities (see Tables 1 
and 2). Both the number of subjects per experiment and the number of 
foci each experiment reports are very influential in regard to the ALE 
algorithm outcome. The higher the number of subjects, the tighter the 
Gaussian probability distribution replacing the coordinates in the 
modeled activation maps. An experiment with a high number of par
ticipants has a relatively strong impact at the precise locations of its 
reported foci, while an experiment with only few participants has a 
much lower and more diffuse impact. The number of foci influences the 
amount of convergence observed by chance, and therefore strongly in
fluences the thresholds resulting from vFWE and cFWE permutation 
testing. When comparing the structural and functional imaging subsets 
of the BrainMap database, we observed that on average structural 
neuroimaging experiments included many more participants than did 
experiments investigating task-related brain activations (independent 
samples t-test: t = 75.76, p<0.0001). The number of foci reported was 
higher for task-activation (vs. VBM) experiments featuring more foci on 
average (medians: 6 vs 4; independent samples t-test: t = 92.14, 
p<0.0001). 

Fig. 1. Simulation workflow. Two indepen
dent draws from the filtered structural Brain
map database were used to determine the 
sample size and the number of foci reported by 
the experiment. Next, we sampled the corre
sponding number of coordinates from a lenient 
gray-matter mask. Last, the first coordinate 
was replaced by the “true” coordinate multi
plied with a displacement factor. This last step 
only occurred if the experiment was chosen to 
be an experiment showing alterations at the 
target location.   

Table 3 
Quantiles of the number of subjects & number of foci parameter distribution in 
the BrainMap VBM database  

Quantile Number of Subjects Number of Foci 

25% 13 2 
50% 20 4 
75% 32 8  
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3.2. Sensitivity, susceptibility to spurious convergence, and cluster size 

Comparing the two significance thresholding approaches (vFWE and 
cFWE) regarding their sensitivity, susceptibility to spurious conver
gence, and the resulting cluster sizes, we found that our results served as 
a useful extension to Eickhoff et al.’s (2016) results (see Fig. 2). Even 

though the simulation parameters are fairly different between the 
studies, based on the differences between the databases used, ALE’s 
performance on the three outcome measures was very stable. Both vFWE 
and cFWE corrections control the susceptibility to spurious convergence 
to the expected degree, that is, corresponding to an alpha error level of 
5%. cFWE achieved higher sensitivities than vFWE, while losing a bit of 

Fig. 2. Comparing voxel- and cluster-level FWE on three outcome measures. Top: Sensitivity to detect clusters at the “true” location (4 mm radius). The x-axis 
represents the number of experiments that feature an alteration at the true location, while the y-axis represents the fraction of clusters which the algorithm recognizes 
as significant per parameter combination. Each total number of experiments has its own curve in the graph, following a spectral color sequence (15 purple - 45 red). 
Both graphs showcase curves of roughly sigmoid fashion, with clusters based on 1-3 alterations not being detected often, strong sensitivity gain around the 4-7 
alteration mark, and almost perfect sensitivity over 8 alterations activating the target location. Overall, cFWE outperforms vFWE and features higher sensitivity 
at any stage. Middle: Size of significant clusters at the “true” location (4 mm radius). x- and y-axes indicate the total number of experiments and the number of 
experiments featuring a “true” alteration, respectively. The higher the rate of experiments featuring a true alteration compared to the total number, the larger the 
resulting clusters. cFWE correction yields much larger clusters than vFWE correction. Bottom: Rate of spurious clusters. Both multiple-comparison correction 
methods succeeded at controlling for an alpha error of .05. 
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spatial specificity due to the higher cluster sizes it yields. These results 
indicate that the assumptions and recommendations about the ALE al
gorithm also hold when applied to VBM studies. 

3.3. Excessive contribution of individual studies 

Since Eickhoff and colleagues’ simulation study (2016), n = 17 ex
periments has been the recommended lower bound for dataset sizes 
when performing ALE analyses thresholded with cFWE (8 experiments 
for vFWE). For datasets larger than this minimum number, the dominant 
experiment’s average contribution to a significant cluster was found to 
be < 50%. We found that when dealing with VBM data, this lower bound 

becomes slightly higher. This results from two factors: 1. The lower 
number of foci reported by VBM experiments and 2. the higher average 
number of participants included in structural neuroimaging experi
ments, which in turn leads to tighter Gaussian distributions on average. 
When using cFWE-corrected thresholding, we observed that 23 experi
ments were required to ensure dominant contributions of less than 50%. 
This corresponds to an average contribution of around 80% by the two 
most dominant experiments. For the more conservative voxel-level 
FWE-corrected thresholding, around 14 experiments were sufficient to 
limit the average contribution of the most dominant experiment to 50%. 
At this point the two most dominant experiments contributed slightly 
less than 90% on average. 

Fig. 3. Quantification of the contribution of the single most (top) and two most (bottom) dominant experiments to spurious clusters. The smaller the ALE analysis 
dataset, the more likely resulting clusters are driven by single experiments. As ALE is supposed to find convergence across the literature, such excessive individual 
contributions need to be avoided, and any given dataset should include a minimum number of experiments. The figures show the fraction of ALE scores contributed 
by the most dominant experiments, averaged over all voxels in a given cluster. We compared three significance thresholding methods (uncorrected, vFWE-, cFWE- 
corrected), denoted by differently colored lines and corresponding confidence intervals in a lighter color of the same hue. 
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3.4. Contribution in homogeneous datasets 

When looking at more homogenous datasets, where both the number 
of subjects and the number of foci were sampled from distribution spaces 
separated by the 25%, 50% and 75% quantile, we observe that the 
overall structure is very similar to what we find when sampling the 
complete VBM database. In fact, when averaging over all 16 groups the 
graphs become very similar to the ones in Fig. 3. Note that we here focus 
on cFWE as it is the current gold standard (Eickhoff et al., 2016) but the 
inferences made hold for vFWE as well. 

When sampling over the whole VBM database 23 experiments were 
enough to ensure below 50% contribution by the most dominant 
experiment when correcting with cFWE. The quantile-based sampling 
employed here showed that this number might be too liberal or con
servative depending on the characteristics of the individual meta- 
analysis dataset (Fig. 4). Datasets in which all experiments feature less 
than 5 foci (blue and green lines) for example do not reach below 50% 
contribution even if they include 29 experiments, which are the largest 
datasets we analyze in this analysis. There are two main relationships 

that influence the relative contribution. The first relationship is that the 
higher the average number of subjects in a dataset, the higher the 
average percentage of ALE achieved by the most dominant experiment. 
The second relationship is that the higher the average number of foci per 
experiment, the lower the dominant contribution. The effect the number 
of foci has on the relative contribution seems to be much stronger than 
the effect of the number of subjects. 

4. Discussion 

This study aimed to assess the stability of the ALE algorithm, sig
nificance thresholding, and sample size recommendations when dealing 
with structural neuroimaging (VBM) data. This work constitutes an 
extension of previous work (Frahm et al. 2022; Eickhoff et al. 2016), in 
which datasets were simulated by sampling from the functional (tas
k-activation) BrainMap database. There are quite substantial differences 
between task-activation and VBM experiments in parameters that 
impact ALE outcomes substantially. On average, VBM experiments 
include many more participants and report fewer peaks than 
task-activation experiments. To assess ALE’s stability in the face of 
different average study characteristics, we simulated and meta-analyzed 
365’000 datasets with different parameter combinations based on the 
VBM subset of the BrainMap database (Vanasse et al., 2018). We then 
evaluated them with respect to three outcome measures. 

In general, the performance of the ALE algorithm was very stable 
across modalities, with the algorithm’s sensitivity and specificity 
reaching similar levels for functional and structural data. In particular, 
cFWE-corrected thresholding features higher sensitivity than vFWE- 
corrected thresholding in almost every scenario, and both techniques 
control the alpha error to the required and expected extent. Even though 
ALE has been applied to structural data for quite some time, this 
investigation serves as a systematic validation of VBM-ALE. 

One difference we observed was that in structural ALE, single ex
periments had, on average, a higher impact towards significant clusters. 
The most important reason for this is the lower number of foci of 
alteration typically reported in VBM experiments. This sparseness of 
results leads to a very low cFWE threshold, as the assumption is that 
there is going to be very little to no convergence in random data. In this 
case very few converging studies will be enough to exceed the threshold 
which in turn leads to high average contribution per study. Another 
reason for the higher impact of single experiments towards significant 
clusters are the higher average number of subjects included in structural 
neuroimaging experiments and the resulting tighter Gaussian kernels 
used to model spatial uncertainty in ALE. As ALE is supposed to indicate 
convergence across a body of literature, care should be taken to ensure 
that significant clusters are not driven by single studies. The contribu
tion of the most dominant experiment should therefore not exceed 50%. 
This is of course an arbitrary threshold, but it serves as a good approx
imation of what we would call “excessive contribution”, especially when 
looking at smaller datasets. Following the results of our analysis, we 
therefore recommend that researchers should aim to include at least 23 
experiments in their VBM-ALE datasets. At that point, the average 
contribution of the dominant experiment reached the aforementioned 
50% criterion when controlling for multiple comparisons via cFWE 
correction. This corresponds to an average contribution below 80% by 
the two most dominating experiments. It should be noted, though, that it 
is of course possible to run an ALE analysis on smaller datasets, no 
matter if they are functional or structural. These cases, however, require 
special diligence from the authors in assessing the contributions of ex
periments to individual clusters carefully. Conversely, even analyzing 
datasets with more than 23 experiments does not prevent clusters from 
being mainly driven by a small fraction of experiments in the dataset. As 
such, the recommended minimum number of n = 23 experiments for 
meta-analyses of VBM studies is not to be considered a hard cut-off and 
does not come with a guarantee of obtaining only broadly supported 
results, but it offers a heuristic as to what minimum breadth of support 

Fig. 4. Relative contribution to significant clusters after correcting for multiple 
comparisons with cFWE. Quantification of the contribution of the single most 
(top) and two most (bottom) dominant experiments to spurious clusters. The 
figures show the fraction of ALE scores contributed by the most dominant ex
periments, averaged over all voxels in a given cluster The underlying datasets 
are created by sampling from specific quantiles of the number of subjects and 
foci distribution. Each line represents a certain sampling quantile combination. 
The four different colors indicate datasets sampling from low to high number of 
foci and the lightness/darkness of the color indicates sampling from low to high 
number of subjects. 
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can be expected for the results. 
An increasingly used approach to assessing the robustness of ALE 

results is running a jackknife analysis, which is a leave-one-out cross- 
validation scheme. This means recomputing n-1 (total number of ex
periments - 1) ALEs, always dropping another experiment from the 
dataset. The analysis allows ascertaining that clusters that reach sig
nificance in every fold of the cross-validation are not driven by a single 
experiment. While definitely improving on the conclusiveness of ALE 
results, the approach loses some of its information value at the inter
action of two experiments driving the cluster. At this point, the cluster 
would appear significant in every fold of the cross-validation, but two 
experiments might still be a very miniscule fraction of the total number 
of experiments in the dataset. It appears questionable if such clusters 
should be counted as robust. Future research should investigate possi
bilities to better quantify and consider contributions and the robustness 
of clusters to assist researchers in the weighting and interpretation of 
their results. 

These simulations were modeled following naturalistic parameter 
settings as closely as possible. It should be noted, however, that the 
parameters of any real dataset, especially regarding convergence, 
cannot be exactly known a priori. This is a limitation of any simulation 
work, which is why recommendations derived from such work should 
not be perceived as absolute. Specifically, when talking about the 
contribution and robustness of clusters, researchers should always 
examine their findings carefully. Another important factor not taken 
into account in this simulation work is the quality of the included 
studies, which has been identified as a major influencer of meta-analysis 
validity (Mueller et al., 2018; Tahmasian et al., 2019). Unfortunately, it 
is not possible to simulate experiment quality and it is therefore not in 
the scope of this research to evaluate the impact of study quality on ALE 
results. Furthermore, our simulation results cannot be extrapolated to 
other coordinate-based meta-analysis techniques, like multilevel 
kernel-density analysis (Kober and Wager, 2010; Nee et al., 2007; Wager 
et al., 2009) or seed-based d mapping (Albajes-Eizagirre et al., 2018; 
Radua et al., 2012; Radua et al., 2010). While the underlying core 
concept is shared between all of these techniques, the actual statistical 
implementation differs quite substantially. Even though there are some 
meta-analysis publication using, comparing and showing convergence 
between ALE and SDM (e.g., Enge et al., 2021), we feel that a more 
thorough and systematic comparison between all CBMA-methods would 
be an important step for the neuroimaging meta-analysis community. 

5. Conclusion 

We performed large-scale simulations based on parameters derived 
from the structural neuroimaging part of the BrainMap database to 
assess the behavior, power, and sensitivity of ALE when dealing with 
VBM data. Our investigation serves as the first formal validation of 
structural ALE, showcasing the algorithm’s stability when applied to 
coordinates derived from neuroimaging data of a different modality 
than evaluated in prior work. For conducting an ALE meta-analysis of 
structural neuroimaging experiments (i.e., VBM data), researchers 
should aim to be somewhat more conservative than recommended 
previously for task-activation studies, that is, they should aim to include 
23 or more experiments. 
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