001015283 001__ 1015283
001015283 005__ 20240708132855.0
001015283 037__ $$aFZJ-2023-03638
001015283 041__ $$aEnglish
001015283 1001_ $$0P:(DE-Juel1)190723$$aZeng, Yuan$$b0$$eCorresponding author$$ufzj
001015283 1112_ $$a21st International Conference on Solid-State Protonic Conductors$$cFukuoka$$d2023-09-17 - 2023-09-22$$gSSPC-21$$wJapan
001015283 245__ $$aPreparation of 1 μm Thick and Dense BaZr0.8Y0.2O3-δ Electrolyte via Water-Based Wet Powder Spraying for Proton Conducting Ceramic Cells
001015283 260__ $$c2023
001015283 3367_ $$033$$2EndNote$$aConference Paper
001015283 3367_ $$2BibTeX$$aINPROCEEDINGS
001015283 3367_ $$2DRIVER$$aconferenceObject
001015283 3367_ $$2ORCID$$aCONFERENCE_POSTER
001015283 3367_ $$2DataCite$$aOutput Types/Conference Poster
001015283 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1695792329_3955$$xAfter Call
001015283 520__ $$aThe thin Ce- and sintering aids-free BaZr0.8Y0.2O3-δ (BZY) electrolyte layer was developed by the wet powder spraying deposition. For this purpose, nanopowder was initially prepared by the Pechini synthesis and consecutive milling to d50 ~ 100 nm and further processed to environmentally friendly aqueous dispersion. This dispersion was then coated onto the pre-fired Ba(Zr,Ce,Y)O3-δ/NiO substrate by wet powder spraying. By adjusting the process parameters, the thickness of the final sintered electrolyte could be controlled, with a minimum thickness as low as 1 μm. Dense electrolyte layers were achieved by tuning the sintering program. The thermal treatment procedure used for the preparation of the substrate layer has been found to play a crucial role in the sintering and densification of the electrolyte. Acknowledgement: Chinese Scholarship Council (CSC); HGF Research Program “Materials and Technologies for the Energy Transition” (MTET) - Topic 3: Chemical Energy Carriers.
001015283 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001015283 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001015283 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001015283 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001015283 7001_ $$0P:(DE-Juel1)187594$$aSchäfer, Laura-Alena$$b1$$ufzj
001015283 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b2$$ufzj
001015283 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b3$$eCorresponding author$$ufzj
001015283 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b4$$ufzj
001015283 909CO $$ooai:juser.fz-juelich.de:1015283$$pVDB
001015283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190723$$aForschungszentrum Jülich$$b0$$kFZJ
001015283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187594$$aForschungszentrum Jülich$$b1$$kFZJ
001015283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b2$$kFZJ
001015283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b3$$kFZJ
001015283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b4$$kFZJ
001015283 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001015283 9141_ $$y2023
001015283 920__ $$lyes
001015283 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001015283 980__ $$aposter
001015283 980__ $$aVDB
001015283 980__ $$aI:(DE-Juel1)IEK-1-20101013
001015283 980__ $$aUNRESTRICTED
001015283 981__ $$aI:(DE-Juel1)IMD-2-20101013