001015284 001__ 1015284
001015284 005__ 20240708132855.0
001015284 037__ $$aFZJ-2023-03639
001015284 041__ $$aEnglish
001015284 1001_ $$0P:(DE-Juel1)190723$$aZeng, Yuan$$b0$$eCorresponding author
001015284 1112_ $$a21st International Conference on Solid-State Protonic Conductors$$cFukuoka$$d2023-09-17 - 2023-09-22$$gSSPC-21$$wJapan
001015284 245__ $$aTailoring Properties of BaZr0.8-xCe0.2YxO3-δ Proton Conductors for Enhanced Performance in Electrochemical Devices
001015284 260__ $$c2023
001015284 3367_ $$033$$2EndNote$$aConference Paper
001015284 3367_ $$2BibTeX$$aINPROCEEDINGS
001015284 3367_ $$2DRIVER$$aconferenceObject
001015284 3367_ $$2ORCID$$aCONFERENCE_POSTER
001015284 3367_ $$2DataCite$$aOutput Types/Conference Poster
001015284 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1695787639_32223$$xAfter Call
001015284 520__ $$aAbstract: In this work, 20 mol.% of Ce was introduced into the lattice of Y-doped BaZrO3, and 0.5 wt.% of NiO was applied as a sintering aid. The Y2O3 substituent amount varies within the range of 10-30 mol.% in order to study the influence of Y on the phase formation, microstructure, hydration behavior, electrical performance, mechanical properties and thermo-chemical stability. The samples were prepared by solid state reaction combined with traditional sintering process at 1500 °C for 10h. Y-riched phase has been found in samples with Y content exceeding 20 mol.%. Excessive Y2O3 substitution has a negative impact on the grain boundary conductivity. The grain conductivity increases linearly with the increase in Y content (except for the sample with 30 mol.%. of Y). The impact of Y on proton conduction in the grain is revealed by integrating experimental and simulation results. This work provides comprehensive guidance for the selection of electrolyte composition for electrochemical devices.Acknowledgement: Chinese Scholarship Council (CSC); HGF Research Program “Materials and Technologies for the Energy Transition” (MTET) - Topic 3: Chemical Energy Carriers.
001015284 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001015284 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001015284 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001015284 7001_ $$0P:(DE-Juel1)187594$$aSchäfer, Laura-Alena$$b1
001015284 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b2
001015284 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b3$$eCorresponding author
001015284 7001_ $$0P:(DE-HGF)0$$aLeonard, Kwati$$b4
001015284 7001_ $$0P:(DE-HGF)0$$aMatsumoto, Hiroshige$$b5
001015284 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b6
001015284 909CO $$ooai:juser.fz-juelich.de:1015284$$pVDB
001015284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190723$$aForschungszentrum Jülich$$b0$$kFZJ
001015284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187594$$aForschungszentrum Jülich$$b1$$kFZJ
001015284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b2$$kFZJ
001015284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b3$$kFZJ
001015284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b6$$kFZJ
001015284 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001015284 9141_ $$y2023
001015284 920__ $$lyes
001015284 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001015284 980__ $$aposter
001015284 980__ $$aVDB
001015284 980__ $$aI:(DE-Juel1)IEK-1-20101013
001015284 980__ $$aUNRESTRICTED
001015284 981__ $$aI:(DE-Juel1)IMD-2-20101013