001     1015284
005     20240708132855.0
037 _ _ |a FZJ-2023-03639
041 _ _ |a English
100 1 _ |a Zeng, Yuan
|0 P:(DE-Juel1)190723
|b 0
|e Corresponding author
111 2 _ |a 21st International Conference on Solid-State Protonic Conductors
|g SSPC-21
|c Fukuoka
|d 2023-09-17 - 2023-09-22
|w Japan
245 _ _ |a Tailoring Properties of BaZr0.8-xCe0.2YxO3-δ Proton Conductors for Enhanced Performance in Electrochemical Devices
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1695787639_32223
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Abstract: In this work, 20 mol.% of Ce was introduced into the lattice of Y-doped BaZrO3, and 0.5 wt.% of NiO was applied as a sintering aid. The Y2O3 substituent amount varies within the range of 10-30 mol.% in order to study the influence of Y on the phase formation, microstructure, hydration behavior, electrical performance, mechanical properties and thermo-chemical stability. The samples were prepared by solid state reaction combined with traditional sintering process at 1500 °C for 10h. Y-riched phase has been found in samples with Y content exceeding 20 mol.%. Excessive Y2O3 substitution has a negative impact on the grain boundary conductivity. The grain conductivity increases linearly with the increase in Y content (except for the sample with 30 mol.%. of Y). The impact of Y on proton conduction in the grain is revealed by integrating experimental and simulation results. This work provides comprehensive guidance for the selection of electrolyte composition for electrochemical devices.Acknowledgement: Chinese Scholarship Council (CSC); HGF Research Program “Materials and Technologies for the Energy Transition” (MTET) - Topic 3: Chemical Energy Carriers.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Schäfer, Laura-Alena
|0 P:(DE-Juel1)187594
|b 1
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)162228
|b 2
700 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 3
|e Corresponding author
700 1 _ |a Leonard, Kwati
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Matsumoto, Hiroshige
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 6
909 C O |o oai:juser.fz-juelich.de:1015284
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190723
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162228
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21