001     1015298
005     20231122201849.0
024 7 _ |a 10.48550/ARXIV.2308.05864
|2 doi
024 7 _ |a 10.48550/arXiv.2308.05864
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03643
|2 datacite_doi
037 _ _ |a FZJ-2023-03643
041 _ _ |a English
100 1 _ |a Ma, Jun
|b 0
245 _ _ |a The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1700655996_31605
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyperparameters in different experimental settings. Here, we present a multi-modality cell segmentation benchmark, comprising over 1500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods, but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)
|0 G:(GEPRIS)347572269
|c 347572269
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 2
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 3
536 _ _ |a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)
|0 G:(DE-Juel-1)E.40401.62
|c E.40401.62
|x 4
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Image and Video Processing (eess.IV)
|2 Other
650 _ 7 |a Computer Vision and Pattern Recognition (cs.CV)
|2 Other
650 _ 7 |a Machine Learning (cs.LG)
|2 Other
650 _ 7 |a Quantitative Methods (q-bio.QM)
|2 Other
650 _ 7 |a FOS: Electrical engineering, electronic engineering, information engineering
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
650 _ 7 |a FOS: Biological sciences
|2 Other
700 1 _ |a Xie, Ronald
|b 1
700 1 _ |a Ayyadhury, Shamini
|b 2
700 1 _ |a Ge, Cheng
|b 3
700 1 _ |a Gupta, Anubha
|b 4
700 1 _ |a Gupta, Ritu
|b 5
700 1 _ |a Gu, Song
|b 6
700 1 _ |a Zhang, Yao
|b 7
700 1 _ |a Lee, Gihun
|b 8
700 1 _ |a Kim, Joonkee
|b 9
700 1 _ |a Lou, Wei
|b 10
700 1 _ |a Li, Haofeng
|b 11
700 1 _ |a Upschulte, Eric
|0 P:(DE-Juel1)177675
|b 12
|u fzj
700 1 _ |a Dickscheid, Timo
|0 P:(DE-Juel1)165746
|b 13
|u fzj
700 1 _ |a de Almeida, José Guilherme
|b 14
700 1 _ |a Wang, Yixin
|b 15
700 1 _ |a Han, Lin
|b 16
700 1 _ |a Yang, Xin
|b 17
700 1 _ |a Labagnara, Marco
|b 18
700 1 _ |a Rahi, Sahand Jamal
|b 19
700 1 _ |a Kempster, Carly
|b 20
700 1 _ |a Pollitt, Alice
|b 21
700 1 _ |a Espinosa, Leon
|b 22
700 1 _ |a Mignot, Tâm
|b 23
700 1 _ |a Middeke, Jan Moritz
|b 24
700 1 _ |a Eckardt, Jan-Niklas
|b 25
700 1 _ |a Li, Wangkai
|b 26
700 1 _ |a Li, Zhaoyang
|b 27
700 1 _ |a Cai, Xiaochen
|b 28
700 1 _ |a Bai, Bizhe
|b 29
700 1 _ |a Greenwald, Noah F.
|b 30
700 1 _ |a Van Valen, David
|b 31
700 1 _ |a Weisbart, Erin
|b 32
700 1 _ |a Cimini, Beth A.
|b 33
700 1 _ |a Li, Zhuoshi
|b 34
700 1 _ |a Zuo, Chao
|b 35
700 1 _ |a Brück, Oscar
|b 36
700 1 _ |a Bader, Gary D.
|b 37
700 1 _ |a Wang, Bo
|0 P:(DE-HGF)0
|b 38
|e Corresponding author
773 _ _ |a 10.48550/arXiv.2308.05864
|y 2023
|t arxiv
856 4 _ |u https://juser.fz-juelich.de/record/1015298/files/2308.05864.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1015298
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)177675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)165746
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21