001015348 001__ 1015348
001015348 005__ 20240313103129.0
001015348 0247_ $$2doi$$a10.48550/arXiv.1805.10235
001015348 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03672
001015348 037__ $$aFZJ-2023-03672
001015348 1001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b0$$eCorresponding author
001015348 245__ $$aReconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space
001015348 260__ $$barXiv$$c2023
001015348 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1695964656_26063
001015348 3367_ $$2ORCID$$aWORKING_PAPER
001015348 3367_ $$028$$2EndNote$$aElectronic Article
001015348 3367_ $$2DRIVER$$apreprint
001015348 3367_ $$2BibTeX$$aARTICLE
001015348 3367_ $$2DataCite$$aOutput Types/Working Paper
001015348 500__ $$aversion 2 [2023]
001015348 520__ $$aMulti-electrode arrays covering several square millimeters of neural tissue provide simultaneous access to population signals such as extracellular potentials and spiking activity of one hundred or more individual neurons. The interpretation of the recorded data calls for multiscale computational models with corresponding spatial dimensions and signal predictions. Such models facilitate identifying candidate mechanisms underlying experimentally observed spatiotemporal activity patterns in the cortex. Multi-layer spiking neuron network models of local cortical circuits covering about 1 mm$^2$ have been developed, integrating experimentally obtained neuron-type-specific connectivity data and reproducing features of observed in-vivo spiking statistics. Local field potentials (LFPs) can be computed from the simulated spiking activity. We here extend a local network and LFP model to an area of 4$\times$4 mm$^2$. The upscaling preserves the densities of neurons while capturing a larger proportion of the local synapses within the model. The procedure further introduces distance-dependent connection probabilities and conduction delays. Based on model predictions of spiking activity and LFPs, we find that the upscaling procedure preserves the overall spiking statistics of the original model and reproduces asynchronous irregular spiking across populations and weak pairwise spike-train correlations in agreement with experimental data recorded in the sensory cortex. In contrast with the weak spike-train correlations, the correlation of LFP signals is strong and decays over a distance of several hundred micrometers, compatible with experimental observations. Enhanced spatial coherence in the low-gamma band around 50 Hz may explain the recent experimental report of an apparent band-pass filter effect in the spatial reach of the LFP.
001015348 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001015348 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001015348 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x2
001015348 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
001015348 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x4
001015348 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
001015348 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x6
001015348 536__ $$0G:(Grant)250128_20200305$$aCOBRA - COmputing BRAin signals (COBRA): Biophysical computations of electrical and magnetic brain signals (250128_20200305)$$c250128_20200305$$x7
001015348 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x8
001015348 536__ $$0G:(GEPRIS)313856816$$aDFG project 313856816 - SPP 2041: Computational Connectomics (313856816)$$c313856816$$x9
001015348 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x10
001015348 536__ $$0G:(DE-Juel1)jinb33_20191101$$aBrain-Scale Simulations (jinb33_20191101)$$cjinb33_20191101$$fBrain-Scale Simulations$$x11
001015348 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x12
001015348 588__ $$aDataset connected to DataCite
001015348 650_7 $$2Other$$aNeurons and Cognition (q-bio.NC)
001015348 650_7 $$2Other$$aFOS: Biological sciences
001015348 7001_ $$0P:(DE-Juel1)164166$$aHagen, Espen$$b1
001015348 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b2
001015348 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b3
001015348 773__ $$a10.48550/arXiv.1805.10235$$tarXiv$$y2023
001015348 8564_ $$uhttps://juser.fz-juelich.de/record/1015348/files/1805.10235.pdf$$yOpenAccess
001015348 909CO $$ooai:juser.fz-juelich.de:1015348$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001015348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b0$$kFZJ
001015348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b2$$kFZJ
001015348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b3$$kFZJ
001015348 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001015348 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001015348 9141_ $$y2023
001015348 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001015348 920__ $$lno
001015348 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001015348 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001015348 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001015348 9801_ $$aFullTexts
001015348 980__ $$apreprint
001015348 980__ $$aVDB
001015348 980__ $$aUNRESTRICTED
001015348 980__ $$aI:(DE-Juel1)INM-6-20090406
001015348 980__ $$aI:(DE-Juel1)IAS-6-20130828
001015348 980__ $$aI:(DE-Juel1)INM-10-20170113
001015348 981__ $$aI:(DE-Juel1)IAS-6-20130828