001015426 001__ 1015426
001015426 005__ 20231116095327.0
001015426 0247_ $$2doi$$a10.1016/j.freeradbiomed.2023.09.003
001015426 0247_ $$2ISSN$$a0891-5849
001015426 0247_ $$2ISSN$$a1873-4596
001015426 0247_ $$2pmid$$a37722569
001015426 0247_ $$2WOS$$aWOS:001083542200001
001015426 037__ $$aFZJ-2023-03683
001015426 041__ $$aEnglish
001015426 082__ $$a610
001015426 1001_ $$0P:(DE-HGF)0$$aBueno, Diones$$b0
001015426 245__ $$aNECAB2 is an endosomal protein important for striatal function
001015426 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001015426 3367_ $$2DRIVER$$aarticle
001015426 3367_ $$2DataCite$$aOutput Types/Journal article
001015426 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1695909676_18944
001015426 3367_ $$2BibTeX$$aARTICLE
001015426 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001015426 3367_ $$00$$2EndNote$$aJournal Article
001015426 500__ $$aPostprint liegt mir aktuell leider nicht vor
001015426 520__ $$aSynaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.
001015426 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001015426 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001015426 588__ $$aDataset connected to DataCite
001015426 7001_ $$0P:(DE-HGF)0$$aNarayan Dey, Partha$$b1
001015426 7001_ $$0P:(DE-HGF)0$$aSchacht, Teresa$$b2
001015426 7001_ $$0P:(DE-HGF)0$$aWolf, Christina$$b3
001015426 7001_ $$0P:(DE-HGF)0$$aWüllner, Verena$$b4
001015426 7001_ $$0P:(DE-HGF)0$$aMorpurgo, Elena$$b5
001015426 7001_ $$0P:(DE-HGF)0$$aRojas-Charry, Liliana$$b6
001015426 7001_ $$0P:(DE-HGF)0$$aSessinghaus, Lena$$b7
001015426 7001_ $$0P:(DE-HGF)0$$aLeukel, Petra$$b8
001015426 7001_ $$0P:(DE-HGF)0$$aSommer, Clemens$$b9
001015426 7001_ $$0P:(DE-HGF)0$$aRadyushkin, Konstantin$$b10
001015426 7001_ $$0P:(DE-HGF)0$$aFlorin, Luise$$b11
001015426 7001_ $$0P:(DE-HGF)0$$aBaumgart, Jan$$b12
001015426 7001_ $$0P:(DE-HGF)0$$aStamm, Paul$$b13
001015426 7001_ $$0P:(DE-HGF)0$$aDaiber, Andreas$$b14
001015426 7001_ $$0P:(DE-HGF)0$$aHorta, Guilherme$$b15
001015426 7001_ $$0P:(DE-HGF)0$$aNardi, Leonardo$$b16
001015426 7001_ $$0P:(DE-HGF)0$$aVasic, Verica$$b17
001015426 7001_ $$0P:(DE-HGF)0$$aSchmeisser, Michael J.$$b18
001015426 7001_ $$0P:(DE-HGF)0$$aHellwig, Andrea$$b19
001015426 7001_ $$0P:(DE-Juel1)131712$$aOskamp, Angela$$b20$$ufzj
001015426 7001_ $$aBauer, Andreas$$b21
001015426 7001_ $$0P:(DE-HGF)0$$aAnand, Ruchika$$b22
001015426 7001_ $$0P:(DE-Juel1)171721$$aReichert, Andreas S.$$b23
001015426 7001_ $$0P:(DE-HGF)0$$aRitz, Sandra$$b24
001015426 7001_ $$0P:(DE-HGF)0$$aNocera, Gianluigi$$b25
001015426 7001_ $$0P:(DE-HGF)0$$aJacob, Claire$$b26
001015426 7001_ $$0P:(DE-HGF)0$$aPeper, Jonas$$b27
001015426 7001_ $$0P:(DE-HGF)0$$aSilies, Marion$$b28
001015426 7001_ $$0P:(DE-HGF)0$$aFrauenknecht, Katrin B. M.$$b29
001015426 7001_ $$0P:(DE-HGF)0$$aSchäfer, Michael K. E.$$b30
001015426 7001_ $$00000-0002-8774-0057$$aMethner, Axel$$b31$$eCorresponding author
001015426 773__ $$0PERI:(DE-600)1483653-1$$a10.1016/j.freeradbiomed.2023.09.003$$gVol. 208, p. 643 - 656$$p643 - 656$$tFree radical biology and medicine$$v208$$x0891-5849$$y2023
001015426 909CO $$ooai:juser.fz-juelich.de:1015426$$pVDB
001015426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131712$$aForschungszentrum Jülich$$b20$$kFZJ
001015426 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001015426 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001015426 9141_ $$y2023
001015426 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-15
001015426 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001015426 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001015426 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-28$$wger
001015426 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFREE RADICAL BIO MED : 2022$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-28
001015426 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFREE RADICAL BIO MED : 2022$$d2023-08-28
001015426 920__ $$lyes
001015426 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
001015426 980__ $$ajournal
001015426 980__ $$aVDB
001015426 980__ $$aI:(DE-Juel1)INM-2-20090406
001015426 980__ $$aUNRESTRICTED