Home > Publications database > NECAB2 is an endosomal protein important for striatal function > print |
001 | 1015426 | ||
005 | 20231116095327.0 | ||
024 | 7 | _ | |a 10.1016/j.freeradbiomed.2023.09.003 |2 doi |
024 | 7 | _ | |a 0891-5849 |2 ISSN |
024 | 7 | _ | |a 1873-4596 |2 ISSN |
024 | 7 | _ | |a 37722569 |2 pmid |
024 | 7 | _ | |a WOS:001083542200001 |2 WOS |
037 | _ | _ | |a FZJ-2023-03683 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Bueno, Diones |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a NECAB2 is an endosomal protein important for striatal function |
260 | _ | _ | |a New York, NY [u.a.] |c 2023 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1695909676_18944 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Postprint liegt mir aktuell leider nicht vor |
520 | _ | _ | |a Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Narayan Dey, Partha |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schacht, Teresa |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Wolf, Christina |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Wüllner, Verena |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Morpurgo, Elena |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Rojas-Charry, Liliana |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Sessinghaus, Lena |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Leukel, Petra |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Sommer, Clemens |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Radyushkin, Konstantin |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Florin, Luise |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Baumgart, Jan |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Stamm, Paul |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Daiber, Andreas |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Horta, Guilherme |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Nardi, Leonardo |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Vasic, Verica |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Schmeisser, Michael J. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Hellwig, Andrea |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Oskamp, Angela |0 P:(DE-Juel1)131712 |b 20 |u fzj |
700 | 1 | _ | |a Bauer, Andreas |b 21 |
700 | 1 | _ | |a Anand, Ruchika |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Reichert, Andreas S. |0 P:(DE-Juel1)171721 |b 23 |
700 | 1 | _ | |a Ritz, Sandra |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Nocera, Gianluigi |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Jacob, Claire |0 P:(DE-HGF)0 |b 26 |
700 | 1 | _ | |a Peper, Jonas |0 P:(DE-HGF)0 |b 27 |
700 | 1 | _ | |a Silies, Marion |0 P:(DE-HGF)0 |b 28 |
700 | 1 | _ | |a Frauenknecht, Katrin B. M. |0 P:(DE-HGF)0 |b 29 |
700 | 1 | _ | |a Schäfer, Michael K. E. |0 P:(DE-HGF)0 |b 30 |
700 | 1 | _ | |a Methner, Axel |0 0000-0002-8774-0057 |b 31 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.freeradbiomed.2023.09.003 |g Vol. 208, p. 643 - 656 |0 PERI:(DE-600)1483653-1 |p 643 - 656 |t Free radical biology and medicine |v 208 |y 2023 |x 0891-5849 |
909 | C | O | |o oai:juser.fz-juelich.de:1015426 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 20 |6 P:(DE-Juel1)131712 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 1 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-15 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-28 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FREE RADICAL BIO MED : 2022 |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-28 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-28 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FREE RADICAL BIO MED : 2022 |d 2023-08-28 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-2-20090406 |k INM-2 |l Molekulare Organisation des Gehirns |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|