001016528 001__ 1016528
001016528 005__ 20231102201846.0
001016528 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03694
001016528 037__ $$aFZJ-2023-03694
001016528 041__ $$aEnglish
001016528 1001_ $$0P:(DE-Juel1)179506$$aHilgers, Robin$$b0$$eCorresponding author$$ufzj
001016528 1112_ $$aCMD30 FisMat2023$$cMilan$$d2023-09-04 - 2023-09-08$$wItaly
001016528 245__ $$aMagnetic Multilayers: From High-Throughput Ab-initio Calculations to Predictive Machine Learning
001016528 260__ $$c2023
001016528 3367_ $$033$$2EndNote$$aConference Paper
001016528 3367_ $$2DataCite$$aOther
001016528 3367_ $$2BibTeX$$aINPROCEEDINGS
001016528 3367_ $$2DRIVER$$aconferenceObject
001016528 3367_ $$2ORCID$$aLECTURE_SPEECH
001016528 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1698909442_32702$$xAfter Call
001016528 520__ $$aThin-film multi-layer systems of 3d transition metals exhibiting magnetic phenomena are prototype systems in the field of surface magnetism [1,2]. The possibility to tune the interactions by choosing different elements and different stacking, enables scientists and engineers to design materials with specific desired magnetic properties. Up to now, the magnetic properties are rarely examined using high-throughput simulations due to the peculiarities of the setup and technical challenges induced by the surface setup in DFT [3] calculations.We performed a combinatorics study of such multilayer surface systems by employing a layer swapping based approach using three different mono-atomic 3d transition metal layers on noble metal (FCC) substrates. Hence, we systematically constructed symmetric thin-films and computed the resulting magnetic properties. By using a highly automated AiiDA [4,5] workflow and our all-electron full-potential DFT code FLEUR [3] we studied 6660 possible configurations of film systems. This systematic approach enables us to perform a detailed analysis of the underlying physics, magnetic properties as well as to apply ML and XAI techniques on the acquired data. Concluding, we demonstrate the capabilities of state-of-the-art computational frameworks [4,5,6] and workflows [7] in high-throughput materials screening.Acknowledgement: This work was performed as part of the Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE) and received funding from the Helmholtz Association of German Research Centres. References:[1] Zhang, L. (2022). Topological magnonic properties of two-dimensional magnetic materials (Vol. 253, p. 154 p.) [Dissertation, Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag]. https://juser.fz-juelich.de/record/907375[2] Blügel S. Two-dimensional ferromagnetism of 3d, 4d, and 5d transition metal monolayers on noble metal (001) substrates. Phys Rev Lett. 1992 Feb 10;68(6):851-854. doi: 10.1103/PhysRevLett.68.851. PMID: 10046009.[3] FLEUR Code www.flapw.de[4] S. P. Huber et al., AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance, Scientific Data 7, 300 (2020); DOI: 10.1038/s41597-020-00638-4[5] Jens Bröder, Vasily Tseplyaev, Henning Janssen, Anoop Chandran, Daniel Wortmann, & Stefan Blügel. (2022). JuDFTteam/aiida-fleur: AiiDA-FLEUR (v.1.3.1). Zenodo. https://doi.org/10.5281/zenodo.6420726[6] Bröder, J. (2021). High-throughput All-Electron Density Functional Theory Simulations for a Data-driven Chemical Interpretation of X-ray Photoelectron Spectra (Vol. 229, pp. viii, 169, XL S.) [Dissertation, Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag]. https://juser.fz-juelich.de/record/891865[7] Vasily Tseplyaev, PhD Thesis. Unpublished.
001016528 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001016528 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
001016528 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001016528 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
001016528 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x2
001016528 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001016528 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x1
001016528 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b1$$ufzj
001016528 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$ufzj
001016528 8564_ $$uhttps://eventi.cnism.it/cmd30-fismat/submission/view/13645588601744479196
001016528 8564_ $$uhttps://juser.fz-juelich.de/record/1016528/files/Presentation.pdf$$yOpenAccess
001016528 909CO $$ooai:juser.fz-juelich.de:1016528$$popenaire$$popen_access$$pVDB$$pdriver
001016528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179506$$aForschungszentrum Jülich$$b0$$kFZJ
001016528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b1$$kFZJ
001016528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001016528 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001016528 9141_ $$y2023
001016528 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016528 920__ $$lyes
001016528 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001016528 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001016528 980__ $$aconf
001016528 980__ $$aVDB
001016528 980__ $$aI:(DE-Juel1)IAS-1-20090406
001016528 980__ $$aI:(DE-Juel1)PGI-1-20110106
001016528 980__ $$aUNRESTRICTED
001016528 9801_ $$aFullTexts