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Magnetic Multilayers: Spintronics Platform

Magnetic Multilayers properties are
tuneable by:

� Choice of thickness
� Choice of layer composition
� Choice of growth conditions
� Choice of FM or AF coupling

strength
� Possibility to modify e.g. DMI
� Device scalability

=> Convenient for materials design, but
lack of systematic high-throughput
studies

Figure: W. Legrand et al, Nature Materials 19, 34 (2020), Garello
et al., Nature Nano. ’13, Freimuth, Geranton, et al., ’14-’17
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Methodological Overview

Methods used:

� First-principles based structural
relaxations using the FLEUR code

� Systematic high-throughput study
supported by the AiiDA framework

� Necessary AiiDA-fleur plugin
� XGBoost ML model

However, relaxing magnetic films can be
challenging as:

� The convergence is strongly
dependent on the initial state and
structure

� Magnetic solutions can be
non-unique

� Converged solutions can be
meta-stable
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2D Layered Film Structures

� Relaxing the A, B, and C layers in
z-direction...

� ...using high-throughput DFT...
� ...for a total of 6660 films, allowing

the outer layers to be unoccupied.
� Initial ILD’s are set using average

bond-lengths from the Materials
Project database.

� Relaxation => Minimizing the
interatomic-force
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Figure: A, B,C ∈ {Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn},
Substrate ∈ {Pt, Au, Ag, Ir, Pd, Rh}.
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Magnetic-Moment

A general problem in high-throughput DFT is input parameter estimation and tuning.
Let’s discuss the methodology we used in the following for the magnetic moment:

Magnetic Moments mA, mB , mC :
� Magnetic films are examined =>

Ferromagnetic initialization
� Default initial moment for all atoms

of 1 µB

However:
� Magnetic moments initialization

choice can impact the output state...
� ...hence could introduce a bias...
� ...and affect convergence.
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Results with ILD & Magnetic Moment Guesses

Convergence rate:

� From 6660 films only 4316
converged

� Corresponding to 64.8 %
convergence rate

� Too much, even for high-throughput

Errors occurring:

� Structural (e.g. layers repelling each
other entirely)

� Suboptimal starting state (e.g. SCF
loop did not converge)

How to fix this in a reasonable way? (Fixing ≈2000 calculations manually is not a
viable option!)
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Idea: ML for Magnetic Moment Optimization

Using the converged compounds data
to...

� .. train a ML model (in this case
XGBoost) to predict the magnetic
moments from the composition
alone.

� .. predict mA, mB , and mC for failed
films.

� .. use the ML prediction as input to
restart.
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Intermediary Result: Improved Convergence Rate

� 570 more systems converged
� Increased convergence rate to 73.3 %

� Better convergence rate by simply optimizing the magnetic starting point
� Still large error rate
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ILD

Interlayer Distances dAB , dBC , dCSub :

� Interlayer-Distance (ILD) estimation
by mean average bond lengths

� Computed pairwise for all atom pairs
� Based on all bonds in the Materials

Project structures database

Optimization could assist with:

� Reducing number of relaxation steps
required

� Assisting with method specific
problems which emerge from bad
ILD estimates
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2nd Idea: ML for ILD Optimization

Using the converged compounds data to...

� .. train a ML model (in this case XGBoost) to predict the magnetic moments
from the composition alone.

� .. predict dAB , dBC , and dCSub for failed films.
� .. use the ML prediction as input to restart.

=> This time also structural optimization and replacement of the ILD guess!
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Accumulated Convergence Rate
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Guess Improvement (When to start with ML?)

Posterior analysis:
� From about 200

structures, ML
beats classical
estimate

� Ideally, we
should’ve started
earlier with this
method

� Best case:
Continuous model
integration
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Additional Benefits of DFT Integrated ML

Beyond the convergence rate improval up to 94 % advantages are:

� Optimizing Structure and Magnetism => Reduced needed relaxation steps by
27 %

� ILD prediction has 70 % lower error - compared to the ab-initio results - than the
bond length estimate guess.

� Easy to implement on a high-throughput scale.
� This method is not restricted to magnetic moments and ILD’s. Any quantity

which is in-/ and output of an ab-initio calculation can be learned and predicted.

13 / 14



Conclusion & Acknowledgements

� Integrating ML into high-throughput ab-initio studies can benefit both
convergence rate, as well as computational efficiency

� ML puts existing data to a use, enabling it to accelerate the scientific discovery
process instead of just being accumulated

� ML complements ab-initio methods in high-throughput applications by making
input parameter tuning feasible on a large scale

This work was performed as part of the Helmholtz School for Data Science in Life,
Earth and Energy (HDS-LEE) and received funding from the Helmholtz Association of
German Research Centres.

Contact: r.hilgers@fz-juelich.de
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