001016535 001__ 1016535
001016535 005__ 20250203124520.0
001016535 0247_ $$2doi$$a10.1109/TQE.2023.3290593
001016535 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03701
001016535 0247_ $$2WOS$$aWOS:001376834500001
001016535 037__ $$aFZJ-2023-03701
001016535 082__ $$a621.3
001016535 1001_ $$00000-0002-2498-0352$$aAnders, Jens$$b0
001016535 245__ $$aCMOS Integrated Circuits for the Quantum Information Sciences
001016535 260__ $$aNew York, NY$$bIEEE$$c2023
001016535 3367_ $$2DRIVER$$aarticle
001016535 3367_ $$2DataCite$$aOutput Types/Journal article
001016535 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1696422769_11804
001016535 3367_ $$2BibTeX$$aARTICLE
001016535 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016535 3367_ $$00$$2EndNote$$aJournal Article
001016535 520__ $$aOver the past decade, significant progress in quantum technologies has been made, and hence, engineering of these systems has become an important research area. Many researchers have become interested in studying ways in which classical integrated circuits can be used to complement quantum mechanical systems, enabling more compact, performant, and/or extensible systems than would be otherwise feasible. In this article—written by a consortium of early contributors to the field—we provide a review of some of the early integrated circuits for the quantum information sciences. Complementary metal--oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) integrated circuits for nuclear magnetic resonance, nitrogen-vacancy-based magnetometry, trapped-ion-based quantum computing, superconductor-based quantum computing, and quantum-dot-based quantum computing are described. In each case, the basic technological requirements are presented before describing proof-of-concept integrated circuits. We conclude by summarizing some of the many open research areas in the quantum information sciences for CMOS designers.
001016535 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001016535 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016535 7001_ $$00000-0001-7635-5324$$aBabaie, Masoud$$b1
001016535 7001_ $$00000-0002-6523-6730$$aBardin, Joseph C.$$b2$$eCorresponding author
001016535 7001_ $$00000-0002-7404-6920$$aBashir, Imran$$b3
001016535 7001_ $$0P:(DE-HGF)0$$aBilliot, Gérard$$b4
001016535 7001_ $$00000-0002-4164-4350$$aBlokhina, Elena$$b5
001016535 7001_ $$00000-0001-7523-7254$$aBonen, Shai$$b6
001016535 7001_ $$00000-0002-0620-3365$$aCharbon, Edoardo$$b7
001016535 7001_ $$0P:(DE-HGF)0$$aChiaverini, John$$b8
001016535 7001_ $$0P:(DE-HGF)0$$aChuang, Isaac L.$$b9
001016535 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, Carsten$$b10
001016535 7001_ $$0P:(DE-HGF)0$$aEnglund, Dirk$$b11
001016535 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b12
001016535 7001_ $$0P:(DE-HGF)0$$aLe Guevel, Loïck$$b13
001016535 7001_ $$00000-0001-6925-2466$$aHam, Donhee$$b14
001016535 7001_ $$00000-0002-6289-7832$$aHan, Ruonan$$b15
001016535 7001_ $$00000-0003-3084-5533$$aIbrahim, Mohamed I.$$b16
001016535 7001_ $$00000-0002-8087-8942$$aKrüger, Daniel$$b17
001016535 7001_ $$00000-0003-1781-971X$$aLei, Ka Meng$$b18
001016535 7001_ $$0P:(DE-HGF)0$$aMorel, Adrien$$b19
001016535 7001_ $$0P:(DE-Juel1)168167$$aNielinger, Dennis$$b20$$ufzj
001016535 7001_ $$00000-0003-0539-7185$$aPillonnet, Gaël$$b21
001016535 7001_ $$0P:(DE-HGF)0$$aSage, Jeremy M.$$b22
001016535 7001_ $$00000-0002-8489-9409$$aSebastiano, Fabio$$b23
001016535 7001_ $$00000-0001-9848-1129$$aStaszewski, Robert Bogdan$$b24
001016535 7001_ $$00000-0001-5863-109X$$aStuart, Jules$$b25
001016535 7001_ $$0P:(DE-HGF)0$$aVladimirescu, Andrei$$b26
001016535 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b27
001016535 7001_ $$0P:(DE-HGF)0$$aVoinigescu, Sorin P.$$b28
001016535 773__ $$0PERI:(DE-600)3035782-2$$a10.1109/TQE.2023.3290593$$gVol. 4, p. 1 - 30$$p 5100230$$tIEEE transactions on quantum engineering$$v4$$x2689-1808$$y2023
001016535 8564_ $$uhttps://juser.fz-juelich.de/record/1016535/files/CMOS_Integrated_Circuits_for_the_Quantum_Information_Sciences.pdf$$yOpenAccess
001016535 909CO $$ooai:juser.fz-juelich.de:1016535$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001016535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b10$$kFZJ
001016535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b12$$kFZJ
001016535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168167$$aForschungszentrum Jülich$$b20$$kFZJ
001016535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b27$$kFZJ
001016535 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001016535 9141_ $$y2023
001016535 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-09-03
001016535 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001016535 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:53:35Z
001016535 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:53:35Z
001016535 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016535 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:53:35Z
001016535 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-03
001016535 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-03
001016535 920__ $$lyes
001016535 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001016535 9801_ $$aFullTexts
001016535 980__ $$ajournal
001016535 980__ $$aVDB
001016535 980__ $$aUNRESTRICTED
001016535 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001016535 981__ $$aI:(DE-Juel1)PGI-4-20110106