001016535 001__ 1016535 001016535 005__ 20250203124520.0 001016535 0247_ $$2doi$$a10.1109/TQE.2023.3290593 001016535 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03701 001016535 0247_ $$2WOS$$aWOS:001376834500001 001016535 037__ $$aFZJ-2023-03701 001016535 082__ $$a621.3 001016535 1001_ $$00000-0002-2498-0352$$aAnders, Jens$$b0 001016535 245__ $$aCMOS Integrated Circuits for the Quantum Information Sciences 001016535 260__ $$aNew York, NY$$bIEEE$$c2023 001016535 3367_ $$2DRIVER$$aarticle 001016535 3367_ $$2DataCite$$aOutput Types/Journal article 001016535 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1696422769_11804 001016535 3367_ $$2BibTeX$$aARTICLE 001016535 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001016535 3367_ $$00$$2EndNote$$aJournal Article 001016535 520__ $$aOver the past decade, significant progress in quantum technologies has been made, and hence, engineering of these systems has become an important research area. Many researchers have become interested in studying ways in which classical integrated circuits can be used to complement quantum mechanical systems, enabling more compact, performant, and/or extensible systems than would be otherwise feasible. In this article—written by a consortium of early contributors to the field—we provide a review of some of the early integrated circuits for the quantum information sciences. Complementary metal--oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) integrated circuits for nuclear magnetic resonance, nitrogen-vacancy-based magnetometry, trapped-ion-based quantum computing, superconductor-based quantum computing, and quantum-dot-based quantum computing are described. In each case, the basic technological requirements are presented before describing proof-of-concept integrated circuits. We conclude by summarizing some of the many open research areas in the quantum information sciences for CMOS designers. 001016535 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001016535 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001016535 7001_ $$00000-0001-7635-5324$$aBabaie, Masoud$$b1 001016535 7001_ $$00000-0002-6523-6730$$aBardin, Joseph C.$$b2$$eCorresponding author 001016535 7001_ $$00000-0002-7404-6920$$aBashir, Imran$$b3 001016535 7001_ $$0P:(DE-HGF)0$$aBilliot, Gérard$$b4 001016535 7001_ $$00000-0002-4164-4350$$aBlokhina, Elena$$b5 001016535 7001_ $$00000-0001-7523-7254$$aBonen, Shai$$b6 001016535 7001_ $$00000-0002-0620-3365$$aCharbon, Edoardo$$b7 001016535 7001_ $$0P:(DE-HGF)0$$aChiaverini, John$$b8 001016535 7001_ $$0P:(DE-HGF)0$$aChuang, Isaac L.$$b9 001016535 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, Carsten$$b10 001016535 7001_ $$0P:(DE-HGF)0$$aEnglund, Dirk$$b11 001016535 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b12 001016535 7001_ $$0P:(DE-HGF)0$$aLe Guevel, Loïck$$b13 001016535 7001_ $$00000-0001-6925-2466$$aHam, Donhee$$b14 001016535 7001_ $$00000-0002-6289-7832$$aHan, Ruonan$$b15 001016535 7001_ $$00000-0003-3084-5533$$aIbrahim, Mohamed I.$$b16 001016535 7001_ $$00000-0002-8087-8942$$aKrüger, Daniel$$b17 001016535 7001_ $$00000-0003-1781-971X$$aLei, Ka Meng$$b18 001016535 7001_ $$0P:(DE-HGF)0$$aMorel, Adrien$$b19 001016535 7001_ $$0P:(DE-Juel1)168167$$aNielinger, Dennis$$b20$$ufzj 001016535 7001_ $$00000-0003-0539-7185$$aPillonnet, Gaël$$b21 001016535 7001_ $$0P:(DE-HGF)0$$aSage, Jeremy M.$$b22 001016535 7001_ $$00000-0002-8489-9409$$aSebastiano, Fabio$$b23 001016535 7001_ $$00000-0001-9848-1129$$aStaszewski, Robert Bogdan$$b24 001016535 7001_ $$00000-0001-5863-109X$$aStuart, Jules$$b25 001016535 7001_ $$0P:(DE-HGF)0$$aVladimirescu, Andrei$$b26 001016535 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b27 001016535 7001_ $$0P:(DE-HGF)0$$aVoinigescu, Sorin P.$$b28 001016535 773__ $$0PERI:(DE-600)3035782-2$$a10.1109/TQE.2023.3290593$$gVol. 4, p. 1 - 30$$p 5100230$$tIEEE transactions on quantum engineering$$v4$$x2689-1808$$y2023 001016535 8564_ $$uhttps://juser.fz-juelich.de/record/1016535/files/CMOS_Integrated_Circuits_for_the_Quantum_Information_Sciences.pdf$$yOpenAccess 001016535 909CO $$ooai:juser.fz-juelich.de:1016535$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001016535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b10$$kFZJ 001016535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b12$$kFZJ 001016535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168167$$aForschungszentrum Jülich$$b20$$kFZJ 001016535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b27$$kFZJ 001016535 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001016535 9141_ $$y2023 001016535 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-09-03 001016535 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 001016535 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:53:35Z 001016535 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:53:35Z 001016535 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001016535 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:53:35Z 001016535 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-03 001016535 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-03 001016535 920__ $$lyes 001016535 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0 001016535 9801_ $$aFullTexts 001016535 980__ $$ajournal 001016535 980__ $$aVDB 001016535 980__ $$aUNRESTRICTED 001016535 980__ $$aI:(DE-Juel1)ZEA-2-20090406 001016535 981__ $$aI:(DE-Juel1)PGI-4-20110106