001016706 001__ 1016706
001016706 005__ 20240717202034.0
001016706 0247_ $$2doi$$a10.1039/D3YA00424D
001016706 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03706
001016706 0247_ $$2WOS$$aWOS:001102672200001
001016706 037__ $$aFZJ-2023-03706
001016706 082__ $$a620
001016706 1001_ $$aFaka, Vasiliki$$b0
001016706 245__ $$aPressure Dependence of Ionic Conductivity in Site Disordered Lithium Superionic Argyrodite $Li_6PS_5Br$
001016706 260__ $$aBeijing$$bRoyal Society of Chemistry$$c2023
001016706 3367_ $$2DRIVER$$aarticle
001016706 3367_ $$2DataCite$$aOutput Types/Journal article
001016706 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721197378_14281
001016706 3367_ $$2BibTeX$$aARTICLE
001016706 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016706 3367_ $$00$$2EndNote$$aJournal Article
001016706 500__ $$aAlexander von Humboldt-Stiftung, DFG(ZE 1010/12-1), BMBF(03XP0435C), BMBF(p0020377)
001016706 520__ $$aThe understanding of transport in Li+ solid ionic conductors is critical for the development of solid-state batteries. The influence of activation volumes on ion transport in solid electrolytes has recently garnered renewed research interest, due to the need to control the ion dynamics that influence the ionic conductivity in solid electrolytes. Microscopic activation volumes are believed to correspond to the volume change in the atomic structure of a material that occurs during an ion jump and can be determined thermodynamically from pressure dependent conductivity measurements. However, it remains unknown if and how this external pressure can affect the structure and transport properties of Li+ solid electrolytes. The lithium argyrodites Li6PS5Br have shown high ionic conductivities, influenced by their Br−/S2− site disorder, which is associated with more spatially diffuse lithium-ion distributions. Herein, impedance spectra were acquired over a pressure range of 0.1 GPa to 1.5 GPa and revealed the activation volumes for Li+ migration. Specifically, activation volumes for Li+ migration increase with increasing degrees of Br−/S2− site disorder in Li6PS5Br and with more spatially distributed lithium-ions. Furthermore, estimations of the corresponding migration volumes, which are thought to be a constant of the diffusing mobile ion in the structure are here found to change significantly among different Br−/S2− site disorders. These observations motivate further investigations on how the thermodynamic activation volume in superionic Li+ conductors may provide novel insights to the influences of structure on ion transport in fast ionic conductors.
001016706 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001016706 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016706 7001_ $$0P:(DE-HGF)0$$aAgne, Matthias$$b1
001016706 7001_ $$aTill, Paul$$b2
001016706 7001_ $$aBernges, Tim$$b3
001016706 7001_ $$aSadowski, Marcel$$b4
001016706 7001_ $$aGautam, Ajay$$b5
001016706 7001_ $$aAlbe, Karsten$$b6
001016706 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b7$$eCorresponding author
001016706 773__ $$0PERI:(DE-600)3168416-6$$a10.1039/D3YA00424D$$gp. 10.1039.D3YA00424D$$n11$$p1915-1925$$tEnergy advances$$v2$$x2753-1457$$y2023
001016706 8564_ $$uhttps://juser.fz-juelich.de/record/1016706/files/d3ya00424d.pdf$$yOpenAccess
001016706 8564_ $$uhttps://juser.fz-juelich.de/record/1016706/files/d3ya00424d.gif?subformat=icon$$xicon$$yOpenAccess
001016706 8564_ $$uhttps://juser.fz-juelich.de/record/1016706/files/d3ya00424d.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001016706 8564_ $$uhttps://juser.fz-juelich.de/record/1016706/files/d3ya00424d.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001016706 8564_ $$uhttps://juser.fz-juelich.de/record/1016706/files/d3ya00424d.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001016706 909CO $$ooai:juser.fz-juelich.de:1016706$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pVDB
001016706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b7$$kFZJ
001016706 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001016706 9141_ $$y2023
001016706 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-06-21T15:05:04Z
001016706 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
001016706 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-06-21T15:05:04Z
001016706 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016706 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-06-21T15:05:04Z
001016706 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-12-06
001016706 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001016706 980__ $$ajournal
001016706 980__ $$aVDB
001016706 980__ $$aI:(DE-Juel1)IEK-12-20141217
001016706 980__ $$aUNRESTRICTED
001016706 9801_ $$aFullTexts
001016706 981__ $$aI:(DE-Juel1)IMD-4-20141217