001016718 001__ 1016718
001016718 005__ 20231116095329.0
001016718 0247_ $$2doi$$a10.1021/acs.jpclett.3c02419
001016718 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03710
001016718 0247_ $$2pmid$$a37773009
001016718 0247_ $$2WOS$$aWOS:001076180000001
001016718 037__ $$aFZJ-2023-03710
001016718 082__ $$a530
001016718 1001_ $$0P:(DE-Juel1)185991$$aAldarawsheh, Amal$$b0$$eCorresponding author$$ufzj
001016718 245__ $$aIntrinsic Néel Antiferromagnetic Multimeronic Spin Textures in Ultrathin Films
001016718 260__ $$aWashington, DC$$bACS$$c2023
001016718 3367_ $$2DRIVER$$aarticle
001016718 3367_ $$2DataCite$$aOutput Types/Journal article
001016718 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1697706563_3929
001016718 3367_ $$2BibTeX$$aARTICLE
001016718 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016718 3367_ $$00$$2EndNote$$aJournal Article
001016718 520__ $$aTopological antiferromagnetism is a vibrant and captivating research field, generating considerable enthusiasm with the aim of identifying topologically protected magnetic states of key importance in the hybrid realm of topology, magnetism, and spintronics. While topological antiferromagnetic (AFM) solitons bear various advantages with respect to their ferromagnetic cousins, their observation is scarce. Utilizing first-principles simulations, here we predict new chiral particles in the realm of AFM topological magnetism, exchange-frustrated multimeronic spin textures hosted by a Néel magnetic state, arising universally in single Mn layers directly grown on an Ir(111) surface or interfaced with Pd-based films. These nanoscale topological structures are intrinsic; i.e. they form in a single AFM material, can carry distinct topological charges, and can combine in various multimeronic sequences with enhanced stability against external magnetic fields. We envision the frustrated Néel AFM multimerons as exciting highly sought after AFM solitons having the potential to be utilized in novel spintronic devices hinging on nonsynthetic AFM quantum materials, further advancing the frontiers of nanotechnology and nanophysics
001016718 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001016718 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
001016718 536__ $$0G:(GEPRIS)462676712$$aDFG project 462676712 - iAFMskyrmionen- Intrinsische antiferromagnetische Skyrmionen aus ersten Prinzipien: Von der Stabilisierung, der Interaktion mit Defekten bis zum effizienten Nachweis (462676712)$$c462676712$$x2
001016718 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016718 7001_ $$0P:(DE-Juel1)174583$$aSallermann, Moritz$$b1$$ufzj
001016718 7001_ $$0P:(DE-HGF)0$$aAbusaa, Muayad$$b2
001016718 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3$$eCorresponding author$$ufzj
001016718 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.3c02419$$gp. 8970 - 8978$$nXXX$$p8970 - 8978$$tThe journal of physical chemistry letters$$v14$$x1948-7185$$y2023
001016718 8564_ $$uhttps://juser.fz-juelich.de/record/1016718/files/acs.jpclett.3c02419.pdf$$yOpenAccess
001016718 8767_ $$d2023-10-06$$eHybrid-OA$$jPublish and Read
001016718 909CO $$ooai:juser.fz-juelich.de:1016718$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001016718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185991$$aForschungszentrum Jülich$$b0$$kFZJ
001016718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174583$$aForschungszentrum Jülich$$b1$$kFZJ
001016718 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)174583$$a Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland$$b1
001016718 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Arab American University, 240 Jenin, Palestine$$b2
001016718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ
001016718 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001016718 9141_ $$y2023
001016718 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001016718 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001016718 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001016718 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001016718 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001016718 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2022$$d2023-08-23
001016718 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2022$$d2023-08-23
001016718 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001016718 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001016718 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016718 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001016718 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001016718 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001016718 920__ $$lyes
001016718 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001016718 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001016718 980__ $$ajournal
001016718 980__ $$aVDB
001016718 980__ $$aUNRESTRICTED
001016718 980__ $$aI:(DE-Juel1)IAS-1-20090406
001016718 980__ $$aI:(DE-Juel1)PGI-1-20110106
001016718 980__ $$aAPC
001016718 9801_ $$aAPC
001016718 9801_ $$aFullTexts