001016721 001__ 1016721
001016721 005__ 20231215102730.0
001016721 0247_ $$2doi$$a10.3389/fchem.2023.1270351
001016721 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03713
001016721 0247_ $$2pmid$$a37841203
001016721 0247_ $$2WOS$$aWOS:001079579900001
001016721 037__ $$aFZJ-2023-03713
001016721 082__ $$a540
001016721 1001_ $$0P:(DE-Juel1)196906$$aHussain, Mazhar$$b0$$ufzj
001016721 245__ $$aCopper radionuclides for theranostic applications: towards standardisation of their nuclear data. A mini-review
001016721 260__ $$aLausanne$$bFrontiers Media$$c2023
001016721 3367_ $$2DRIVER$$aarticle
001016721 3367_ $$2DataCite$$aOutput Types/Journal article
001016721 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1699433971_28578
001016721 3367_ $$2BibTeX$$aARTICLE
001016721 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016721 3367_ $$00$$2EndNote$$aJournal Article
001016721 520__ $$aCopper has several clinically relevant radioisotopes and versatile coordination chemistry, allowing attachment of its radionuclides to biological molecules. This characteristic makes it suitable for applications in molecular imaging or radionuclide targeted therapy. Of particular interest in nuclear medicine today is the theranostic approach. This brief review considers five radionuclides of copper. These are Cu-60, Cu-61, Cu-62, Cu-64, and Cu-67. The first four are positron emitters for imaging, and the last one Cu-67 is a β--emitting radionuclide suitable for targeted therapy. The emphasis here is on theory-aided evaluation of available experimental data with a view to establishing standardised cross-section database for production of the relevant radionuclide in high purity. Evaluated cross section data of the positron emitters have been already extensively reported; so here they are only briefly reviewed. More attention is given to the data of the 68Zn(p,2p)67Cu intermediate energy reaction which is rather commonly used for production of 67Cu.Keywords: nuclear model calculation; nuclear reaction cross section; radionuclides of copper; standardisation of nuclear data; theranostic approach; thick target yield.
001016721 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001016721 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016721 7001_ $$0P:(DE-Juel1)131840$$aQaim, Syed M.$$b1$$eCorresponding author$$ufzj
001016721 7001_ $$0P:(DE-Juel1)131849$$aSpahn, Ingo$$b2$$ufzj
001016721 7001_ $$0P:(DE-HGF)0$$aAslam, M. Naveed$$b3
001016721 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b4$$ufzj
001016721 773__ $$0PERI:(DE-600)2711776-5$$a10.3389/fchem.2023.1270351$$gVol. 11, p. 1270351$$p1270351$$tFrontiers in Chemistry$$v11$$x2296-2646$$y2023
001016721 8564_ $$uhttps://juser.fz-juelich.de/record/1016721/files/fchem-11-1270351.pdf$$yOpenAccess
001016721 8767_ $$d2023-10-06$$eAPC$$jDeposit$$z1717 $
001016721 909CO $$ooai:juser.fz-juelich.de:1016721$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001016721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196906$$aForschungszentrum Jülich$$b0$$kFZJ
001016721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131840$$aForschungszentrum Jülich$$b1$$kFZJ
001016721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131849$$aForschungszentrum Jülich$$b2$$kFZJ
001016721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b4$$kFZJ
001016721 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001016721 9141_ $$y2023
001016721 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001016721 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001016721 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CHEM : 2022$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT CHEM : 2022$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T10:38:39Z
001016721 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T10:38:39Z
001016721 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016721 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-13T10:38:39Z
001016721 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-19
001016721 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
001016721 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001016721 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001016721 920__ $$lyes
001016721 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001016721 980__ $$ajournal
001016721 980__ $$aVDB
001016721 980__ $$aUNRESTRICTED
001016721 980__ $$aI:(DE-Juel1)INM-5-20090406
001016721 980__ $$aAPC
001016721 9801_ $$aAPC
001016721 9801_ $$aFullTexts