001016743 001__ 1016743
001016743 005__ 20240711113548.0
001016743 0247_ $$2doi$$a10.1016/j.actamat.2023.119256
001016743 0247_ $$2ISSN$$a1359-6454
001016743 0247_ $$2ISSN$$a1873-2453
001016743 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03735
001016743 037__ $$aFZJ-2023-03735
001016743 082__ $$a670
001016743 1001_ $$0P:(DE-HGF)0$$aTian, Chunhua$$b0
001016743 245__ $$aSegregation-enhanced grain boundary embrittlement of recrystallised tungsten evidenced by site-specific microcantilever fracture
001016743 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001016743 3367_ $$2DRIVER$$aarticle
001016743 3367_ $$2DataCite$$aOutput Types/Journal article
001016743 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1696941935_319
001016743 3367_ $$2BibTeX$$aARTICLE
001016743 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016743 3367_ $$00$$2EndNote$$aJournal Article
001016743 520__ $$aTungsten stands a prime candidate for plasma-facing applications in fusion reactors, attributed to its capacity to withstand high temperatures and intensive particle fluxes. The operational heat flux, however, can induce recrystallisation of the initial microstructure, increasing the brittle-to-ductile transition temperature. Although such a phenomenon is thought to result from impurity segregation to grain boundaries, direct evidence of impurity-induced grain boundary embrittlement has not yet been reported. Addressing this, our study employs microcantilever testing, coupled with local chemical analysis via atom probe tomography, to unveil the impact of impurity segregation on the fracture toughness of recrystallised tungsten with a purity of 99.98 at.%. The in situ fracture toughness measurements were performed with the notch placed directly at random high-angle grain boundaries, revealing brittle failure regardless of grain boundary misorientation or grain orientation. Notably, both single-crystalline microcantilevers and the as-received material exhibited significant plasticity before failure, with instances without crack propagation. In contrast, recrystallised grain boundaries displayed a fracture toughness of 4.7 ± 0.4 MPa·√m, determined using a linear elastic approach - notably lower than for cleavage plane fracture in tungsten microcantilevers. Local atom probe analysis of the high-angle grain boundaries exposed phosphorous segregation exceeding 2 at.% at the recrystallised interfaces, stemming from recrystallisation. Atomistic simulations confirmed the role of phosphorous in embrittling high-angle grain boundaries in tungsten, while additionally revealing mechanisms of crack-grain boundary interactions and their dependence on phosphorous segregation.
001016743 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
001016743 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016743 7001_ $$aMa, Yan$$b1
001016743 7001_ $$00000-0001-7383-5998$$aGhafarollahi, Alireza$$b2
001016743 7001_ $$0P:(DE-HGF)0$$aPatil, Piyush$$b3
001016743 7001_ $$00000-0003-1601-8267$$aDehm, Gerhard$$b4
001016743 7001_ $$00000-0001-7430-3694$$aBitzek, Erik$$b5
001016743 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b6
001016743 7001_ $$00000-0003-4728-2052$$aBest, James P.$$b7$$eCorresponding author
001016743 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2023.119256$$gVol. 259, p. 119256 -$$p119256 -$$tActa materialia$$v259$$x1359-6454$$y2023
001016743 8564_ $$uhttps://juser.fz-juelich.de/record/1016743/files/1-s2.0-S1359645423005864-main.pdf$$yOpenAccess
001016743 8564_ $$uhttps://juser.fz-juelich.de/record/1016743/files/pp_rasinski_06_10_23.docx$$yOpenAccess
001016743 909CO $$ooai:juser.fz-juelich.de:1016743$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001016743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b6$$kFZJ
001016743 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
001016743 9141_ $$y2023
001016743 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001016743 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001016743 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016743 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001016743 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001016743 920__ $$lyes
001016743 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
001016743 9801_ $$aFullTexts
001016743 980__ $$ajournal
001016743 980__ $$aVDB
001016743 980__ $$aUNRESTRICTED
001016743 980__ $$aI:(DE-Juel1)IEK-4-20101013
001016743 981__ $$aI:(DE-Juel1)IFN-1-20101013